Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(3-i\right)z=2i-1-2
Subtract 2 from both sides.
\left(3-i\right)z=-1-2+2i
Combine the real and imaginary parts in 2i-1-2.
\left(3-i\right)z=-3+2i
Add -1 to -2.
z=\frac{-3+2i}{3-i}
Divide both sides by 3-i.
z=\frac{\left(-3+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator of \frac{-3+2i}{3-i} by the complex conjugate of the denominator, 3+i.
z=\frac{\left(-3+2i\right)\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-3+2i\right)\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-3\times 3-3i+2i\times 3+2i^{2}}{10}
Multiply complex numbers -3+2i and 3+i like you multiply binomials.
z=\frac{-3\times 3-3i+2i\times 3+2\left(-1\right)}{10}
By definition, i^{2} is -1.
z=\frac{-9-3i+6i-2}{10}
Do the multiplications in -3\times 3-3i+2i\times 3+2\left(-1\right).
z=\frac{-9-2+\left(-3+6\right)i}{10}
Combine the real and imaginary parts in -9-3i+6i-2.
z=\frac{-11+3i}{10}
Do the additions in -9-2+\left(-3+6\right)i.
z=-\frac{11}{10}+\frac{3}{10}i
Divide -11+3i by 10 to get -\frac{11}{10}+\frac{3}{10}i.