Solve for z
z=-\frac{11}{10}+\frac{3}{10}i=-1.1+0.3i
Share
Copied to clipboard
\left(3-i\right)z=2i-1-2
Subtract 2 from both sides.
\left(3-i\right)z=-1-2+2i
Combine the real and imaginary parts in 2i-1-2.
\left(3-i\right)z=-3+2i
Add -1 to -2.
z=\frac{-3+2i}{3-i}
Divide both sides by 3-i.
z=\frac{\left(-3+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator of \frac{-3+2i}{3-i} by the complex conjugate of the denominator, 3+i.
z=\frac{\left(-3+2i\right)\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-3+2i\right)\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-3\times 3-3i+2i\times 3+2i^{2}}{10}
Multiply complex numbers -3+2i and 3+i like you multiply binomials.
z=\frac{-3\times 3-3i+2i\times 3+2\left(-1\right)}{10}
By definition, i^{2} is -1.
z=\frac{-9-3i+6i-2}{10}
Do the multiplications in -3\times 3-3i+2i\times 3+2\left(-1\right).
z=\frac{-9-2+\left(-3+6\right)i}{10}
Combine the real and imaginary parts in -9-3i+6i-2.
z=\frac{-11+3i}{10}
Do the additions in -9-2+\left(-3+6\right)i.
z=-\frac{11}{10}+\frac{3}{10}i
Divide -11+3i by 10 to get -\frac{11}{10}+\frac{3}{10}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}