Evaluate
\frac{\sqrt{3}}{3}+\frac{13}{9}\approx 2.021794714
Factor
\frac{3 \sqrt{3} + 13}{9} = 2.0217947136340704
Share
Copied to clipboard
\frac{18}{9}+\frac{4}{9}-1+\sqrt{\frac{1}{3}}
Convert 2 to fraction \frac{18}{9}.
\frac{18+4}{9}-1+\sqrt{\frac{1}{3}}
Since \frac{18}{9} and \frac{4}{9} have the same denominator, add them by adding their numerators.
\frac{22}{9}-1+\sqrt{\frac{1}{3}}
Add 18 and 4 to get 22.
\frac{22}{9}-\frac{9}{9}+\sqrt{\frac{1}{3}}
Convert 1 to fraction \frac{9}{9}.
\frac{22-9}{9}+\sqrt{\frac{1}{3}}
Since \frac{22}{9} and \frac{9}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{9}+\sqrt{\frac{1}{3}}
Subtract 9 from 22 to get 13.
\frac{13}{9}+\frac{\sqrt{1}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{13}{9}+\frac{1}{\sqrt{3}}
Calculate the square root of 1 and get 1.
\frac{13}{9}+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{13}{9}+\frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{13}{9}+\frac{3\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 3 is 9. Multiply \frac{\sqrt{3}}{3} times \frac{3}{3}.
\frac{13+3\sqrt{3}}{9}
Since \frac{13}{9} and \frac{3\sqrt{3}}{9} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}