Evaluate
\frac{1995}{514}\approx 3.881322957
Factor
\frac{3 \cdot 5 \cdot 7 \cdot 19}{2 \cdot 257} = 3\frac{453}{514} = 3.8813229571984436
Share
Copied to clipboard
\begin{array}{l}\phantom{514)}\phantom{1}\\514\overline{)1995}\\\end{array}
Use the 1^{st} digit 1 from dividend 1995
\begin{array}{l}\phantom{514)}0\phantom{2}\\514\overline{)1995}\\\end{array}
Since 1 is less than 514, use the next digit 9 from dividend 1995 and add 0 to the quotient
\begin{array}{l}\phantom{514)}0\phantom{3}\\514\overline{)1995}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1995
\begin{array}{l}\phantom{514)}00\phantom{4}\\514\overline{)1995}\\\end{array}
Since 19 is less than 514, use the next digit 9 from dividend 1995 and add 0 to the quotient
\begin{array}{l}\phantom{514)}00\phantom{5}\\514\overline{)1995}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1995
\begin{array}{l}\phantom{514)}000\phantom{6}\\514\overline{)1995}\\\end{array}
Since 199 is less than 514, use the next digit 5 from dividend 1995 and add 0 to the quotient
\begin{array}{l}\phantom{514)}000\phantom{7}\\514\overline{)1995}\\\end{array}
Use the 4^{th} digit 5 from dividend 1995
\begin{array}{l}\phantom{514)}0003\phantom{8}\\514\overline{)1995}\\\phantom{514)}\underline{\phantom{}1542\phantom{}}\\\phantom{514)9}453\\\end{array}
Find closest multiple of 514 to 1995. We see that 3 \times 514 = 1542 is the nearest. Now subtract 1542 from 1995 to get reminder 453. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }453
Since 453 is less than 514, stop the division. The reminder is 453. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}