Evaluate
\frac{196}{75}\approx 2.613333333
Factor
\frac{2 ^ {2} \cdot 7 ^ {2}}{3 \cdot 5 ^ {2}} = 2\frac{46}{75} = 2.6133333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)196}\\\end{array}
Use the 1^{st} digit 1 from dividend 196
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)196}\\\end{array}
Since 1 is less than 75, use the next digit 9 from dividend 196 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)196}\\\end{array}
Use the 2^{nd} digit 9 from dividend 196
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)196}\\\end{array}
Since 19 is less than 75, use the next digit 6 from dividend 196 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)196}\\\end{array}
Use the 3^{rd} digit 6 from dividend 196
\begin{array}{l}\phantom{75)}002\phantom{6}\\75\overline{)196}\\\phantom{75)}\underline{\phantom{}150\phantom{}}\\\phantom{75)9}46\\\end{array}
Find closest multiple of 75 to 196. We see that 2 \times 75 = 150 is the nearest. Now subtract 150 from 196 to get reminder 46. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }46
Since 46 is less than 75, stop the division. The reminder is 46. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}