Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

62x^{2}+19528x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-19528±\sqrt{19528^{2}-4\times 62\times 16}}{2\times 62}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 62 for a, 19528 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19528±\sqrt{381342784-4\times 62\times 16}}{2\times 62}
Square 19528.
x=\frac{-19528±\sqrt{381342784-248\times 16}}{2\times 62}
Multiply -4 times 62.
x=\frac{-19528±\sqrt{381342784-3968}}{2\times 62}
Multiply -248 times 16.
x=\frac{-19528±\sqrt{381338816}}{2\times 62}
Add 381342784 to -3968.
x=\frac{-19528±8\sqrt{5958419}}{2\times 62}
Take the square root of 381338816.
x=\frac{-19528±8\sqrt{5958419}}{124}
Multiply 2 times 62.
x=\frac{8\sqrt{5958419}-19528}{124}
Now solve the equation x=\frac{-19528±8\sqrt{5958419}}{124} when ± is plus. Add -19528 to 8\sqrt{5958419}.
x=\frac{2\sqrt{5958419}-4882}{31}
Divide -19528+8\sqrt{5958419} by 124.
x=\frac{-8\sqrt{5958419}-19528}{124}
Now solve the equation x=\frac{-19528±8\sqrt{5958419}}{124} when ± is minus. Subtract 8\sqrt{5958419} from -19528.
x=\frac{-2\sqrt{5958419}-4882}{31}
Divide -19528-8\sqrt{5958419} by 124.
x=\frac{2\sqrt{5958419}-4882}{31} x=\frac{-2\sqrt{5958419}-4882}{31}
The equation is now solved.
62x^{2}+19528x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
62x^{2}+19528x+16-16=-16
Subtract 16 from both sides of the equation.
62x^{2}+19528x=-16
Subtracting 16 from itself leaves 0.
\frac{62x^{2}+19528x}{62}=-\frac{16}{62}
Divide both sides by 62.
x^{2}+\frac{19528}{62}x=-\frac{16}{62}
Dividing by 62 undoes the multiplication by 62.
x^{2}+\frac{9764}{31}x=-\frac{16}{62}
Reduce the fraction \frac{19528}{62} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9764}{31}x=-\frac{8}{31}
Reduce the fraction \frac{-16}{62} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9764}{31}x+\left(\frac{4882}{31}\right)^{2}=-\frac{8}{31}+\left(\frac{4882}{31}\right)^{2}
Divide \frac{9764}{31}, the coefficient of the x term, by 2 to get \frac{4882}{31}. Then add the square of \frac{4882}{31} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9764}{31}x+\frac{23833924}{961}=-\frac{8}{31}+\frac{23833924}{961}
Square \frac{4882}{31} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9764}{31}x+\frac{23833924}{961}=\frac{23833676}{961}
Add -\frac{8}{31} to \frac{23833924}{961} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4882}{31}\right)^{2}=\frac{23833676}{961}
Factor x^{2}+\frac{9764}{31}x+\frac{23833924}{961}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4882}{31}\right)^{2}}=\sqrt{\frac{23833676}{961}}
Take the square root of both sides of the equation.
x+\frac{4882}{31}=\frac{2\sqrt{5958419}}{31} x+\frac{4882}{31}=-\frac{2\sqrt{5958419}}{31}
Simplify.
x=\frac{2\sqrt{5958419}-4882}{31} x=\frac{-2\sqrt{5958419}-4882}{31}
Subtract \frac{4882}{31} from both sides of the equation.