Evaluate
\frac{1948}{1641}\approx 1.187081048
Factor
\frac{2 ^ {2} \cdot 487}{3 \cdot 547} = 1\frac{307}{1641} = 1.1870810481413772
Share
Copied to clipboard
\begin{array}{l}\phantom{1641)}\phantom{1}\\1641\overline{)1948}\\\end{array}
Use the 1^{st} digit 1 from dividend 1948
\begin{array}{l}\phantom{1641)}0\phantom{2}\\1641\overline{)1948}\\\end{array}
Since 1 is less than 1641, use the next digit 9 from dividend 1948 and add 0 to the quotient
\begin{array}{l}\phantom{1641)}0\phantom{3}\\1641\overline{)1948}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1948
\begin{array}{l}\phantom{1641)}00\phantom{4}\\1641\overline{)1948}\\\end{array}
Since 19 is less than 1641, use the next digit 4 from dividend 1948 and add 0 to the quotient
\begin{array}{l}\phantom{1641)}00\phantom{5}\\1641\overline{)1948}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1948
\begin{array}{l}\phantom{1641)}000\phantom{6}\\1641\overline{)1948}\\\end{array}
Since 194 is less than 1641, use the next digit 8 from dividend 1948 and add 0 to the quotient
\begin{array}{l}\phantom{1641)}000\phantom{7}\\1641\overline{)1948}\\\end{array}
Use the 4^{th} digit 8 from dividend 1948
\begin{array}{l}\phantom{1641)}0001\phantom{8}\\1641\overline{)1948}\\\phantom{1641)}\underline{\phantom{}1641\phantom{}}\\\phantom{1641)9}307\\\end{array}
Find closest multiple of 1641 to 1948. We see that 1 \times 1641 = 1641 is the nearest. Now subtract 1641 from 1948 to get reminder 307. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }307
Since 307 is less than 1641, stop the division. The reminder is 307. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}