Evaluate
\frac{193}{75}\approx 2.573333333
Factor
\frac{193}{3 \cdot 5 ^ {2}} = 2\frac{43}{75} = 2.5733333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)193}\\\end{array}
Use the 1^{st} digit 1 from dividend 193
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)193}\\\end{array}
Since 1 is less than 75, use the next digit 9 from dividend 193 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)193}\\\end{array}
Use the 2^{nd} digit 9 from dividend 193
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)193}\\\end{array}
Since 19 is less than 75, use the next digit 3 from dividend 193 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)193}\\\end{array}
Use the 3^{rd} digit 3 from dividend 193
\begin{array}{l}\phantom{75)}002\phantom{6}\\75\overline{)193}\\\phantom{75)}\underline{\phantom{}150\phantom{}}\\\phantom{75)9}43\\\end{array}
Find closest multiple of 75 to 193. We see that 2 \times 75 = 150 is the nearest. Now subtract 150 from 193 to get reminder 43. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }43
Since 43 is less than 75, stop the division. The reminder is 43. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}