Evaluate
\frac{6400}{9}\approx 711.111111111
Factor
\frac{2 ^ {8} \cdot 5 ^ {2}}{3 ^ {2}} = 711\frac{1}{9} = 711.1111111111111
Share
Copied to clipboard
\begin{array}{l}\phantom{270)}\phantom{1}\\270\overline{)192000}\\\end{array}
Use the 1^{st} digit 1 from dividend 192000
\begin{array}{l}\phantom{270)}0\phantom{2}\\270\overline{)192000}\\\end{array}
Since 1 is less than 270, use the next digit 9 from dividend 192000 and add 0 to the quotient
\begin{array}{l}\phantom{270)}0\phantom{3}\\270\overline{)192000}\\\end{array}
Use the 2^{nd} digit 9 from dividend 192000
\begin{array}{l}\phantom{270)}00\phantom{4}\\270\overline{)192000}\\\end{array}
Since 19 is less than 270, use the next digit 2 from dividend 192000 and add 0 to the quotient
\begin{array}{l}\phantom{270)}00\phantom{5}\\270\overline{)192000}\\\end{array}
Use the 3^{rd} digit 2 from dividend 192000
\begin{array}{l}\phantom{270)}000\phantom{6}\\270\overline{)192000}\\\end{array}
Since 192 is less than 270, use the next digit 0 from dividend 192000 and add 0 to the quotient
\begin{array}{l}\phantom{270)}000\phantom{7}\\270\overline{)192000}\\\end{array}
Use the 4^{th} digit 0 from dividend 192000
\begin{array}{l}\phantom{270)}0007\phantom{8}\\270\overline{)192000}\\\phantom{270)}\underline{\phantom{}1890\phantom{99}}\\\phantom{270)99}30\\\end{array}
Find closest multiple of 270 to 1920. We see that 7 \times 270 = 1890 is the nearest. Now subtract 1890 from 1920 to get reminder 30. Add 7 to quotient.
\begin{array}{l}\phantom{270)}0007\phantom{9}\\270\overline{)192000}\\\phantom{270)}\underline{\phantom{}1890\phantom{99}}\\\phantom{270)99}300\\\end{array}
Use the 5^{th} digit 0 from dividend 192000
\begin{array}{l}\phantom{270)}00071\phantom{10}\\270\overline{)192000}\\\phantom{270)}\underline{\phantom{}1890\phantom{99}}\\\phantom{270)99}300\\\phantom{270)}\underline{\phantom{99}270\phantom{9}}\\\phantom{270)999}30\\\end{array}
Find closest multiple of 270 to 300. We see that 1 \times 270 = 270 is the nearest. Now subtract 270 from 300 to get reminder 30. Add 1 to quotient.
\begin{array}{l}\phantom{270)}00071\phantom{11}\\270\overline{)192000}\\\phantom{270)}\underline{\phantom{}1890\phantom{99}}\\\phantom{270)99}300\\\phantom{270)}\underline{\phantom{99}270\phantom{9}}\\\phantom{270)999}300\\\end{array}
Use the 6^{th} digit 0 from dividend 192000
\begin{array}{l}\phantom{270)}000711\phantom{12}\\270\overline{)192000}\\\phantom{270)}\underline{\phantom{}1890\phantom{99}}\\\phantom{270)99}300\\\phantom{270)}\underline{\phantom{99}270\phantom{9}}\\\phantom{270)999}300\\\phantom{270)}\underline{\phantom{999}270\phantom{}}\\\phantom{270)9999}30\\\end{array}
Find closest multiple of 270 to 300. We see that 1 \times 270 = 270 is the nearest. Now subtract 270 from 300 to get reminder 30. Add 1 to quotient.
\text{Quotient: }711 \text{Reminder: }30
Since 30 is less than 270, stop the division. The reminder is 30. The topmost line 000711 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 711.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}