Solve for x
x=\frac{\sqrt{957}-27}{38}\approx 0.103563595
x=\frac{-\sqrt{957}-27}{38}\approx -1.524616226
Graph
Share
Copied to clipboard
190000\left(1+2x+x^{2}\right)=110000\left(1+x\right)+110000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
190000+380000x+190000x^{2}=110000\left(1+x\right)+110000
Use the distributive property to multiply 190000 by 1+2x+x^{2}.
190000+380000x+190000x^{2}=110000+110000x+110000
Use the distributive property to multiply 110000 by 1+x.
190000+380000x+190000x^{2}=220000+110000x
Add 110000 and 110000 to get 220000.
190000+380000x+190000x^{2}-220000=110000x
Subtract 220000 from both sides.
-30000+380000x+190000x^{2}=110000x
Subtract 220000 from 190000 to get -30000.
-30000+380000x+190000x^{2}-110000x=0
Subtract 110000x from both sides.
-30000+270000x+190000x^{2}=0
Combine 380000x and -110000x to get 270000x.
190000x^{2}+270000x-30000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-270000±\sqrt{270000^{2}-4\times 190000\left(-30000\right)}}{2\times 190000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 190000 for a, 270000 for b, and -30000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-270000±\sqrt{72900000000-4\times 190000\left(-30000\right)}}{2\times 190000}
Square 270000.
x=\frac{-270000±\sqrt{72900000000-760000\left(-30000\right)}}{2\times 190000}
Multiply -4 times 190000.
x=\frac{-270000±\sqrt{72900000000+22800000000}}{2\times 190000}
Multiply -760000 times -30000.
x=\frac{-270000±\sqrt{95700000000}}{2\times 190000}
Add 72900000000 to 22800000000.
x=\frac{-270000±10000\sqrt{957}}{2\times 190000}
Take the square root of 95700000000.
x=\frac{-270000±10000\sqrt{957}}{380000}
Multiply 2 times 190000.
x=\frac{10000\sqrt{957}-270000}{380000}
Now solve the equation x=\frac{-270000±10000\sqrt{957}}{380000} when ± is plus. Add -270000 to 10000\sqrt{957}.
x=\frac{\sqrt{957}-27}{38}
Divide -270000+10000\sqrt{957} by 380000.
x=\frac{-10000\sqrt{957}-270000}{380000}
Now solve the equation x=\frac{-270000±10000\sqrt{957}}{380000} when ± is minus. Subtract 10000\sqrt{957} from -270000.
x=\frac{-\sqrt{957}-27}{38}
Divide -270000-10000\sqrt{957} by 380000.
x=\frac{\sqrt{957}-27}{38} x=\frac{-\sqrt{957}-27}{38}
The equation is now solved.
190000\left(1+2x+x^{2}\right)=110000\left(1+x\right)+110000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
190000+380000x+190000x^{2}=110000\left(1+x\right)+110000
Use the distributive property to multiply 190000 by 1+2x+x^{2}.
190000+380000x+190000x^{2}=110000+110000x+110000
Use the distributive property to multiply 110000 by 1+x.
190000+380000x+190000x^{2}=220000+110000x
Add 110000 and 110000 to get 220000.
190000+380000x+190000x^{2}-110000x=220000
Subtract 110000x from both sides.
190000+270000x+190000x^{2}=220000
Combine 380000x and -110000x to get 270000x.
270000x+190000x^{2}=220000-190000
Subtract 190000 from both sides.
270000x+190000x^{2}=30000
Subtract 190000 from 220000 to get 30000.
190000x^{2}+270000x=30000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{190000x^{2}+270000x}{190000}=\frac{30000}{190000}
Divide both sides by 190000.
x^{2}+\frac{270000}{190000}x=\frac{30000}{190000}
Dividing by 190000 undoes the multiplication by 190000.
x^{2}+\frac{27}{19}x=\frac{30000}{190000}
Reduce the fraction \frac{270000}{190000} to lowest terms by extracting and canceling out 10000.
x^{2}+\frac{27}{19}x=\frac{3}{19}
Reduce the fraction \frac{30000}{190000} to lowest terms by extracting and canceling out 10000.
x^{2}+\frac{27}{19}x+\left(\frac{27}{38}\right)^{2}=\frac{3}{19}+\left(\frac{27}{38}\right)^{2}
Divide \frac{27}{19}, the coefficient of the x term, by 2 to get \frac{27}{38}. Then add the square of \frac{27}{38} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{27}{19}x+\frac{729}{1444}=\frac{3}{19}+\frac{729}{1444}
Square \frac{27}{38} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{27}{19}x+\frac{729}{1444}=\frac{957}{1444}
Add \frac{3}{19} to \frac{729}{1444} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{27}{38}\right)^{2}=\frac{957}{1444}
Factor x^{2}+\frac{27}{19}x+\frac{729}{1444}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{27}{38}\right)^{2}}=\sqrt{\frac{957}{1444}}
Take the square root of both sides of the equation.
x+\frac{27}{38}=\frac{\sqrt{957}}{38} x+\frac{27}{38}=-\frac{\sqrt{957}}{38}
Simplify.
x=\frac{\sqrt{957}-27}{38} x=\frac{-\sqrt{957}-27}{38}
Subtract \frac{27}{38} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}