Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=3-\left(19-3x\right)
Subtract 19-3x from both sides of the equation.
\sqrt{x}=3-19-\left(-3x\right)
To find the opposite of 19-3x, find the opposite of each term.
\sqrt{x}=3-19+3x
The opposite of -3x is 3x.
\sqrt{x}=-16+3x
Subtract 19 from 3 to get -16.
\left(\sqrt{x}\right)^{2}=\left(-16+3x\right)^{2}
Square both sides of the equation.
x=\left(-16+3x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=256-96x+9x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-16+3x\right)^{2}.
x-256=-96x+9x^{2}
Subtract 256 from both sides.
x-256+96x=9x^{2}
Add 96x to both sides.
97x-256=9x^{2}
Combine x and 96x to get 97x.
97x-256-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+97x-256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-97±\sqrt{97^{2}-4\left(-9\right)\left(-256\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 97 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-97±\sqrt{9409-4\left(-9\right)\left(-256\right)}}{2\left(-9\right)}
Square 97.
x=\frac{-97±\sqrt{9409+36\left(-256\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-97±\sqrt{9409-9216}}{2\left(-9\right)}
Multiply 36 times -256.
x=\frac{-97±\sqrt{193}}{2\left(-9\right)}
Add 9409 to -9216.
x=\frac{-97±\sqrt{193}}{-18}
Multiply 2 times -9.
x=\frac{\sqrt{193}-97}{-18}
Now solve the equation x=\frac{-97±\sqrt{193}}{-18} when ± is plus. Add -97 to \sqrt{193}.
x=\frac{97-\sqrt{193}}{18}
Divide -97+\sqrt{193} by -18.
x=\frac{-\sqrt{193}-97}{-18}
Now solve the equation x=\frac{-97±\sqrt{193}}{-18} when ± is minus. Subtract \sqrt{193} from -97.
x=\frac{\sqrt{193}+97}{18}
Divide -97-\sqrt{193} by -18.
x=\frac{97-\sqrt{193}}{18} x=\frac{\sqrt{193}+97}{18}
The equation is now solved.
19-3\times \frac{97-\sqrt{193}}{18}+\sqrt{\frac{97-\sqrt{193}}{18}}=3
Substitute \frac{97-\sqrt{193}}{18} for x in the equation 19-3x+\sqrt{x}=3.
\frac{8}{3}+\frac{1}{3}\times 193^{\frac{1}{2}}=3
Simplify. The value x=\frac{97-\sqrt{193}}{18} does not satisfy the equation.
19-3\times \frac{\sqrt{193}+97}{18}+\sqrt{\frac{\sqrt{193}+97}{18}}=3
Substitute \frac{\sqrt{193}+97}{18} for x in the equation 19-3x+\sqrt{x}=3.
3=3
Simplify. The value x=\frac{\sqrt{193}+97}{18} satisfies the equation.
x=\frac{\sqrt{193}+97}{18}
Equation \sqrt{x}=3x-16 has a unique solution.