Solve for x
x = \frac{\sqrt{193} + 97}{18} \approx 6.160691333
Graph
Share
Copied to clipboard
\sqrt{x}=3-\left(19-3x\right)
Subtract 19-3x from both sides of the equation.
\sqrt{x}=3-19-\left(-3x\right)
To find the opposite of 19-3x, find the opposite of each term.
\sqrt{x}=3-19+3x
The opposite of -3x is 3x.
\sqrt{x}=-16+3x
Subtract 19 from 3 to get -16.
\left(\sqrt{x}\right)^{2}=\left(-16+3x\right)^{2}
Square both sides of the equation.
x=\left(-16+3x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=256-96x+9x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-16+3x\right)^{2}.
x-256=-96x+9x^{2}
Subtract 256 from both sides.
x-256+96x=9x^{2}
Add 96x to both sides.
97x-256=9x^{2}
Combine x and 96x to get 97x.
97x-256-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+97x-256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-97±\sqrt{97^{2}-4\left(-9\right)\left(-256\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 97 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-97±\sqrt{9409-4\left(-9\right)\left(-256\right)}}{2\left(-9\right)}
Square 97.
x=\frac{-97±\sqrt{9409+36\left(-256\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-97±\sqrt{9409-9216}}{2\left(-9\right)}
Multiply 36 times -256.
x=\frac{-97±\sqrt{193}}{2\left(-9\right)}
Add 9409 to -9216.
x=\frac{-97±\sqrt{193}}{-18}
Multiply 2 times -9.
x=\frac{\sqrt{193}-97}{-18}
Now solve the equation x=\frac{-97±\sqrt{193}}{-18} when ± is plus. Add -97 to \sqrt{193}.
x=\frac{97-\sqrt{193}}{18}
Divide -97+\sqrt{193} by -18.
x=\frac{-\sqrt{193}-97}{-18}
Now solve the equation x=\frac{-97±\sqrt{193}}{-18} when ± is minus. Subtract \sqrt{193} from -97.
x=\frac{\sqrt{193}+97}{18}
Divide -97-\sqrt{193} by -18.
x=\frac{97-\sqrt{193}}{18} x=\frac{\sqrt{193}+97}{18}
The equation is now solved.
19-3\times \frac{97-\sqrt{193}}{18}+\sqrt{\frac{97-\sqrt{193}}{18}}=3
Substitute \frac{97-\sqrt{193}}{18} for x in the equation 19-3x+\sqrt{x}=3.
\frac{8}{3}+\frac{1}{3}\times 193^{\frac{1}{2}}=3
Simplify. The value x=\frac{97-\sqrt{193}}{18} does not satisfy the equation.
19-3\times \frac{\sqrt{193}+97}{18}+\sqrt{\frac{\sqrt{193}+97}{18}}=3
Substitute \frac{\sqrt{193}+97}{18} for x in the equation 19-3x+\sqrt{x}=3.
3=3
Simplify. The value x=\frac{\sqrt{193}+97}{18} satisfies the equation.
x=\frac{\sqrt{193}+97}{18}
Equation \sqrt{x}=3x-16 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}