Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(19\sqrt{5}-19\sqrt{3}+19\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}-\sqrt{2}\right)
Use the distributive property to multiply 19 by \sqrt{5}-\sqrt{3}+\sqrt{2}.
19\left(\sqrt{5}\right)^{2}-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of 19\sqrt{5}-19\sqrt{3}+19\sqrt{2} by each term of \sqrt{5}-\sqrt{3}-\sqrt{2}.
19\times 5-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
95-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Multiply 19 and 5 to get 95.
95-19\sqrt{15}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
95-19\sqrt{15}-19\sqrt{10}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
95-19\sqrt{15}-19\sqrt{10}-19\sqrt{15}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
95-38\sqrt{15}-19\sqrt{10}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Combine -19\sqrt{15} and -19\sqrt{15} to get -38\sqrt{15}.
95-38\sqrt{15}-19\sqrt{10}+19\times 3+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
95-38\sqrt{15}-19\sqrt{10}+57+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Multiply 19 and 3 to get 57.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Add 95 and 57 to get 152.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{6}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{6}+19\sqrt{10}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
152-38\sqrt{15}+19\sqrt{6}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Combine -19\sqrt{10} and 19\sqrt{10} to get 0.
152-38\sqrt{15}+19\sqrt{6}-19\sqrt{6}-19\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
152-38\sqrt{15}-19\left(\sqrt{2}\right)^{2}
Combine 19\sqrt{6} and -19\sqrt{6} to get 0.
152-38\sqrt{15}-19\times 2
The square of \sqrt{2} is 2.
152-38\sqrt{15}-38
Multiply -19 and 2 to get -38.
114-38\sqrt{15}
Subtract 38 from 152 to get 114.