Solve for g
g\geq 8
Share
Copied to clipboard
37-10g\leq -3g-19
Add 19 and 18 to get 37.
37-10g+3g\leq -19
Add 3g to both sides.
37-7g\leq -19
Combine -10g and 3g to get -7g.
-7g\leq -19-37
Subtract 37 from both sides.
-7g\leq -56
Subtract 37 from -19 to get -56.
g\geq \frac{-56}{-7}
Divide both sides by -7. Since -7 is negative, the inequality direction is changed.
g\geq 8
Divide -56 by -7 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}