Evaluate
\frac{1892}{227}\approx 8.334801762
Factor
\frac{2 ^ {2} \cdot 11 \cdot 43}{227} = 8\frac{76}{227} = 8.334801762114537
Share
Copied to clipboard
\begin{array}{l}\phantom{227)}\phantom{1}\\227\overline{)1892}\\\end{array}
Use the 1^{st} digit 1 from dividend 1892
\begin{array}{l}\phantom{227)}0\phantom{2}\\227\overline{)1892}\\\end{array}
Since 1 is less than 227, use the next digit 8 from dividend 1892 and add 0 to the quotient
\begin{array}{l}\phantom{227)}0\phantom{3}\\227\overline{)1892}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1892
\begin{array}{l}\phantom{227)}00\phantom{4}\\227\overline{)1892}\\\end{array}
Since 18 is less than 227, use the next digit 9 from dividend 1892 and add 0 to the quotient
\begin{array}{l}\phantom{227)}00\phantom{5}\\227\overline{)1892}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1892
\begin{array}{l}\phantom{227)}000\phantom{6}\\227\overline{)1892}\\\end{array}
Since 189 is less than 227, use the next digit 2 from dividend 1892 and add 0 to the quotient
\begin{array}{l}\phantom{227)}000\phantom{7}\\227\overline{)1892}\\\end{array}
Use the 4^{th} digit 2 from dividend 1892
\begin{array}{l}\phantom{227)}0008\phantom{8}\\227\overline{)1892}\\\phantom{227)}\underline{\phantom{}1816\phantom{}}\\\phantom{227)99}76\\\end{array}
Find closest multiple of 227 to 1892. We see that 8 \times 227 = 1816 is the nearest. Now subtract 1816 from 1892 to get reminder 76. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }76
Since 76 is less than 227, stop the division. The reminder is 76. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}