Evaluate
\frac{21}{8}=2.625
Factor
\frac{3 \cdot 7}{2 ^ {3}} = 2\frac{5}{8} = 2.625
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)189}\\\end{array}
Use the 1^{st} digit 1 from dividend 189
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)189}\\\end{array}
Since 1 is less than 72, use the next digit 8 from dividend 189 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)189}\\\end{array}
Use the 2^{nd} digit 8 from dividend 189
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)189}\\\end{array}
Since 18 is less than 72, use the next digit 9 from dividend 189 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)189}\\\end{array}
Use the 3^{rd} digit 9 from dividend 189
\begin{array}{l}\phantom{72)}002\phantom{6}\\72\overline{)189}\\\phantom{72)}\underline{\phantom{}144\phantom{}}\\\phantom{72)9}45\\\end{array}
Find closest multiple of 72 to 189. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 189 to get reminder 45. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }45
Since 45 is less than 72, stop the division. The reminder is 45. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}