Evaluate
314
Factor
2\times 157
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)18840}\\\end{array}
Use the 1^{st} digit 1 from dividend 18840
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)18840}\\\end{array}
Since 1 is less than 60, use the next digit 8 from dividend 18840 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)18840}\\\end{array}
Use the 2^{nd} digit 8 from dividend 18840
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)18840}\\\end{array}
Since 18 is less than 60, use the next digit 8 from dividend 18840 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)18840}\\\end{array}
Use the 3^{rd} digit 8 from dividend 18840
\begin{array}{l}\phantom{60)}003\phantom{6}\\60\overline{)18840}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}8\\\end{array}
Find closest multiple of 60 to 188. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 188 to get reminder 8. Add 3 to quotient.
\begin{array}{l}\phantom{60)}003\phantom{7}\\60\overline{)18840}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}84\\\end{array}
Use the 4^{th} digit 4 from dividend 18840
\begin{array}{l}\phantom{60)}0031\phantom{8}\\60\overline{)18840}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}84\\\phantom{60)}\underline{\phantom{99}60\phantom{9}}\\\phantom{60)99}24\\\end{array}
Find closest multiple of 60 to 84. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 84 to get reminder 24. Add 1 to quotient.
\begin{array}{l}\phantom{60)}0031\phantom{9}\\60\overline{)18840}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}84\\\phantom{60)}\underline{\phantom{99}60\phantom{9}}\\\phantom{60)99}240\\\end{array}
Use the 5^{th} digit 0 from dividend 18840
\begin{array}{l}\phantom{60)}00314\phantom{10}\\60\overline{)18840}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)99}84\\\phantom{60)}\underline{\phantom{99}60\phantom{9}}\\\phantom{60)99}240\\\phantom{60)}\underline{\phantom{99}240\phantom{}}\\\phantom{60)99999}0\\\end{array}
Find closest multiple of 60 to 240. We see that 4 \times 60 = 240 is the nearest. Now subtract 240 from 240 to get reminder 0. Add 4 to quotient.
\text{Quotient: }314 \text{Reminder: }0
Since 0 is less than 60, stop the division. The reminder is 0. The topmost line 00314 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 314.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}