Evaluate
\frac{188}{19}\approx 9.894736842
Factor
\frac{2 ^ {2} \cdot 47}{19} = 9\frac{17}{19} = 9.894736842105264
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)188}\\\end{array}
Use the 1^{st} digit 1 from dividend 188
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)188}\\\end{array}
Since 1 is less than 19, use the next digit 8 from dividend 188 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)188}\\\end{array}
Use the 2^{nd} digit 8 from dividend 188
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)188}\\\end{array}
Since 18 is less than 19, use the next digit 8 from dividend 188 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)188}\\\end{array}
Use the 3^{rd} digit 8 from dividend 188
\begin{array}{l}\phantom{19)}009\phantom{6}\\19\overline{)188}\\\phantom{19)}\underline{\phantom{}171\phantom{}}\\\phantom{19)9}17\\\end{array}
Find closest multiple of 19 to 188. We see that 9 \times 19 = 171 is the nearest. Now subtract 171 from 188 to get reminder 17. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }17
Since 17 is less than 19, stop the division. The reminder is 17. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}