Solve for x (complex solution)
x=-\frac{10\sqrt{934219}i}{143}\approx -0-67.590912618i
x=\frac{10\sqrt{934219}i}{143}\approx 67.590912618i
Graph
Share
Copied to clipboard
370\times 10^{6}=286\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply both sides of the equation by 2.
370\times 1000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Calculate 10 to the power of 6 and get 1000000.
370000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply 370 and 1000000 to get 370000000.
370000000=114400\left(950-\frac{x^{2}}{2}\right)
Multiply 286 and 400 to get 114400.
370000000=108680000+114400\left(-\frac{x^{2}}{2}\right)
Use the distributive property to multiply 114400 by 950-\frac{x^{2}}{2}.
370000000=108680000-57200x^{2}
Cancel out 2, the greatest common factor in 114400 and 2.
108680000-57200x^{2}=370000000
Swap sides so that all variable terms are on the left hand side.
-57200x^{2}=370000000-108680000
Subtract 108680000 from both sides.
-57200x^{2}=261320000
Subtract 108680000 from 370000000 to get 261320000.
x^{2}=\frac{261320000}{-57200}
Divide both sides by -57200.
x^{2}=-\frac{653300}{143}
Reduce the fraction \frac{261320000}{-57200} to lowest terms by extracting and canceling out 400.
x=\frac{10\sqrt{934219}i}{143} x=-\frac{10\sqrt{934219}i}{143}
The equation is now solved.
370\times 10^{6}=286\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply both sides of the equation by 2.
370\times 1000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Calculate 10 to the power of 6 and get 1000000.
370000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply 370 and 1000000 to get 370000000.
370000000=114400\left(950-\frac{x^{2}}{2}\right)
Multiply 286 and 400 to get 114400.
370000000=108680000+114400\left(-\frac{x^{2}}{2}\right)
Use the distributive property to multiply 114400 by 950-\frac{x^{2}}{2}.
370000000=108680000-57200x^{2}
Cancel out 2, the greatest common factor in 114400 and 2.
108680000-57200x^{2}=370000000
Swap sides so that all variable terms are on the left hand side.
108680000-57200x^{2}-370000000=0
Subtract 370000000 from both sides.
-261320000-57200x^{2}=0
Subtract 370000000 from 108680000 to get -261320000.
-57200x^{2}-261320000=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-57200\right)\left(-261320000\right)}}{2\left(-57200\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -57200 for a, 0 for b, and -261320000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-57200\right)\left(-261320000\right)}}{2\left(-57200\right)}
Square 0.
x=\frac{0±\sqrt{228800\left(-261320000\right)}}{2\left(-57200\right)}
Multiply -4 times -57200.
x=\frac{0±\sqrt{-59790016000000}}{2\left(-57200\right)}
Multiply 228800 times -261320000.
x=\frac{0±8000\sqrt{934219}i}{2\left(-57200\right)}
Take the square root of -59790016000000.
x=\frac{0±8000\sqrt{934219}i}{-114400}
Multiply 2 times -57200.
x=-\frac{10\sqrt{934219}i}{143}
Now solve the equation x=\frac{0±8000\sqrt{934219}i}{-114400} when ± is plus.
x=\frac{10\sqrt{934219}i}{143}
Now solve the equation x=\frac{0±8000\sqrt{934219}i}{-114400} when ± is minus.
x=-\frac{10\sqrt{934219}i}{143} x=\frac{10\sqrt{934219}i}{143}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}