Evaluate
10251562
Factor
2\times 5125781
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)184528116}\\\end{array}
Use the 1^{st} digit 1 from dividend 184528116
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)184528116}\\\end{array}
Since 1 is less than 18, use the next digit 8 from dividend 184528116 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)184528116}\\\end{array}
Use the 2^{nd} digit 8 from dividend 184528116
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}0\\\end{array}
Find closest multiple of 18 to 18. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 18 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}4\\\end{array}
Use the 3^{rd} digit 4 from dividend 184528116
\begin{array}{l}\phantom{18)}010\phantom{6}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}4\\\end{array}
Since 4 is less than 18, use the next digit 5 from dividend 184528116 and add 0 to the quotient
\begin{array}{l}\phantom{18)}010\phantom{7}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\end{array}
Use the 4^{th} digit 5 from dividend 184528116
\begin{array}{l}\phantom{18)}0102\phantom{8}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}9\\\end{array}
Find closest multiple of 18 to 45. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 45 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{18)}0102\phantom{9}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\end{array}
Use the 5^{th} digit 2 from dividend 184528116
\begin{array}{l}\phantom{18)}01025\phantom{10}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}2\\\end{array}
Find closest multiple of 18 to 92. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 92 to get reminder 2. Add 5 to quotient.
\begin{array}{l}\phantom{18)}01025\phantom{11}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\end{array}
Use the 6^{th} digit 8 from dividend 184528116
\begin{array}{l}\phantom{18)}010251\phantom{12}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\phantom{18)}\underline{\phantom{9999}18\phantom{999}}\\\phantom{18)9999}10\\\end{array}
Find closest multiple of 18 to 28. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 28 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{18)}010251\phantom{13}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\phantom{18)}\underline{\phantom{9999}18\phantom{999}}\\\phantom{18)9999}101\\\end{array}
Use the 7^{th} digit 1 from dividend 184528116
\begin{array}{l}\phantom{18)}0102515\phantom{14}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\phantom{18)}\underline{\phantom{9999}18\phantom{999}}\\\phantom{18)9999}101\\\phantom{18)}\underline{\phantom{99999}90\phantom{99}}\\\phantom{18)99999}11\\\end{array}
Find closest multiple of 18 to 101. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 101 to get reminder 11. Add 5 to quotient.
\begin{array}{l}\phantom{18)}0102515\phantom{15}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\phantom{18)}\underline{\phantom{9999}18\phantom{999}}\\\phantom{18)9999}101\\\phantom{18)}\underline{\phantom{99999}90\phantom{99}}\\\phantom{18)99999}111\\\end{array}
Use the 8^{th} digit 1 from dividend 184528116
\begin{array}{l}\phantom{18)}01025156\phantom{16}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\phantom{18)}\underline{\phantom{9999}18\phantom{999}}\\\phantom{18)9999}101\\\phantom{18)}\underline{\phantom{99999}90\phantom{99}}\\\phantom{18)99999}111\\\phantom{18)}\underline{\phantom{99999}108\phantom{9}}\\\phantom{18)9999999}3\\\end{array}
Find closest multiple of 18 to 111. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 111 to get reminder 3. Add 6 to quotient.
\begin{array}{l}\phantom{18)}01025156\phantom{17}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\phantom{18)}\underline{\phantom{9999}18\phantom{999}}\\\phantom{18)9999}101\\\phantom{18)}\underline{\phantom{99999}90\phantom{99}}\\\phantom{18)99999}111\\\phantom{18)}\underline{\phantom{99999}108\phantom{9}}\\\phantom{18)9999999}36\\\end{array}
Use the 9^{th} digit 6 from dividend 184528116
\begin{array}{l}\phantom{18)}010251562\phantom{18}\\18\overline{)184528116}\\\phantom{18)}\underline{\phantom{}18\phantom{9999999}}\\\phantom{18)99}45\\\phantom{18)}\underline{\phantom{99}36\phantom{99999}}\\\phantom{18)999}92\\\phantom{18)}\underline{\phantom{999}90\phantom{9999}}\\\phantom{18)9999}28\\\phantom{18)}\underline{\phantom{9999}18\phantom{999}}\\\phantom{18)9999}101\\\phantom{18)}\underline{\phantom{99999}90\phantom{99}}\\\phantom{18)99999}111\\\phantom{18)}\underline{\phantom{99999}108\phantom{9}}\\\phantom{18)9999999}36\\\phantom{18)}\underline{\phantom{9999999}36\phantom{}}\\\phantom{18)999999999}0\\\end{array}
Find closest multiple of 18 to 36. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 36 to get reminder 0. Add 2 to quotient.
\text{Quotient: }10251562 \text{Reminder: }0
Since 0 is less than 18, stop the division. The reminder is 0. The topmost line 010251562 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10251562.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}