Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(46x^{2}+35x-29\right)
Factor out 4.
a+b=35 ab=46\left(-29\right)=-1334
Consider 46x^{2}+35x-29. Factor the expression by grouping. First, the expression needs to be rewritten as 46x^{2}+ax+bx-29. To find a and b, set up a system to be solved.
-1,1334 -2,667 -23,58 -29,46
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1334.
-1+1334=1333 -2+667=665 -23+58=35 -29+46=17
Calculate the sum for each pair.
a=-23 b=58
The solution is the pair that gives sum 35.
\left(46x^{2}-23x\right)+\left(58x-29\right)
Rewrite 46x^{2}+35x-29 as \left(46x^{2}-23x\right)+\left(58x-29\right).
23x\left(2x-1\right)+29\left(2x-1\right)
Factor out 23x in the first and 29 in the second group.
\left(2x-1\right)\left(23x+29\right)
Factor out common term 2x-1 by using distributive property.
4\left(2x-1\right)\left(23x+29\right)
Rewrite the complete factored expression.
184x^{2}+140x-116=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-140±\sqrt{140^{2}-4\times 184\left(-116\right)}}{2\times 184}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-140±\sqrt{19600-4\times 184\left(-116\right)}}{2\times 184}
Square 140.
x=\frac{-140±\sqrt{19600-736\left(-116\right)}}{2\times 184}
Multiply -4 times 184.
x=\frac{-140±\sqrt{19600+85376}}{2\times 184}
Multiply -736 times -116.
x=\frac{-140±\sqrt{104976}}{2\times 184}
Add 19600 to 85376.
x=\frac{-140±324}{2\times 184}
Take the square root of 104976.
x=\frac{-140±324}{368}
Multiply 2 times 184.
x=\frac{184}{368}
Now solve the equation x=\frac{-140±324}{368} when ± is plus. Add -140 to 324.
x=\frac{1}{2}
Reduce the fraction \frac{184}{368} to lowest terms by extracting and canceling out 184.
x=-\frac{464}{368}
Now solve the equation x=\frac{-140±324}{368} when ± is minus. Subtract 324 from -140.
x=-\frac{29}{23}
Reduce the fraction \frac{-464}{368} to lowest terms by extracting and canceling out 16.
184x^{2}+140x-116=184\left(x-\frac{1}{2}\right)\left(x-\left(-\frac{29}{23}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and -\frac{29}{23} for x_{2}.
184x^{2}+140x-116=184\left(x-\frac{1}{2}\right)\left(x+\frac{29}{23}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
184x^{2}+140x-116=184\times \frac{2x-1}{2}\left(x+\frac{29}{23}\right)
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
184x^{2}+140x-116=184\times \frac{2x-1}{2}\times \frac{23x+29}{23}
Add \frac{29}{23} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
184x^{2}+140x-116=184\times \frac{\left(2x-1\right)\left(23x+29\right)}{2\times 23}
Multiply \frac{2x-1}{2} times \frac{23x+29}{23} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
184x^{2}+140x-116=184\times \frac{\left(2x-1\right)\left(23x+29\right)}{46}
Multiply 2 times 23.
184x^{2}+140x-116=4\left(2x-1\right)\left(23x+29\right)
Cancel out 46, the greatest common factor in 184 and 46.