Evaluate
198
Factor
2\times 3^{2}\times 11
Share
Copied to clipboard
\begin{array}{l}\phantom{920)}\phantom{1}\\920\overline{)182160}\\\end{array}
Use the 1^{st} digit 1 from dividend 182160
\begin{array}{l}\phantom{920)}0\phantom{2}\\920\overline{)182160}\\\end{array}
Since 1 is less than 920, use the next digit 8 from dividend 182160 and add 0 to the quotient
\begin{array}{l}\phantom{920)}0\phantom{3}\\920\overline{)182160}\\\end{array}
Use the 2^{nd} digit 8 from dividend 182160
\begin{array}{l}\phantom{920)}00\phantom{4}\\920\overline{)182160}\\\end{array}
Since 18 is less than 920, use the next digit 2 from dividend 182160 and add 0 to the quotient
\begin{array}{l}\phantom{920)}00\phantom{5}\\920\overline{)182160}\\\end{array}
Use the 3^{rd} digit 2 from dividend 182160
\begin{array}{l}\phantom{920)}000\phantom{6}\\920\overline{)182160}\\\end{array}
Since 182 is less than 920, use the next digit 1 from dividend 182160 and add 0 to the quotient
\begin{array}{l}\phantom{920)}000\phantom{7}\\920\overline{)182160}\\\end{array}
Use the 4^{th} digit 1 from dividend 182160
\begin{array}{l}\phantom{920)}0001\phantom{8}\\920\overline{)182160}\\\phantom{920)}\underline{\phantom{9}920\phantom{99}}\\\phantom{920)9}901\\\end{array}
Find closest multiple of 920 to 1821. We see that 1 \times 920 = 920 is the nearest. Now subtract 920 from 1821 to get reminder 901. Add 1 to quotient.
\begin{array}{l}\phantom{920)}0001\phantom{9}\\920\overline{)182160}\\\phantom{920)}\underline{\phantom{9}920\phantom{99}}\\\phantom{920)9}9016\\\end{array}
Use the 5^{th} digit 6 from dividend 182160
\begin{array}{l}\phantom{920)}00019\phantom{10}\\920\overline{)182160}\\\phantom{920)}\underline{\phantom{9}920\phantom{99}}\\\phantom{920)9}9016\\\phantom{920)}\underline{\phantom{9}8280\phantom{9}}\\\phantom{920)99}736\\\end{array}
Find closest multiple of 920 to 9016. We see that 9 \times 920 = 8280 is the nearest. Now subtract 8280 from 9016 to get reminder 736. Add 9 to quotient.
\begin{array}{l}\phantom{920)}00019\phantom{11}\\920\overline{)182160}\\\phantom{920)}\underline{\phantom{9}920\phantom{99}}\\\phantom{920)9}9016\\\phantom{920)}\underline{\phantom{9}8280\phantom{9}}\\\phantom{920)99}7360\\\end{array}
Use the 6^{th} digit 0 from dividend 182160
\begin{array}{l}\phantom{920)}000198\phantom{12}\\920\overline{)182160}\\\phantom{920)}\underline{\phantom{9}920\phantom{99}}\\\phantom{920)9}9016\\\phantom{920)}\underline{\phantom{9}8280\phantom{9}}\\\phantom{920)99}7360\\\phantom{920)}\underline{\phantom{99}7360\phantom{}}\\\phantom{920)999999}0\\\end{array}
Find closest multiple of 920 to 7360. We see that 8 \times 920 = 7360 is the nearest. Now subtract 7360 from 7360 to get reminder 0. Add 8 to quotient.
\text{Quotient: }198 \text{Reminder: }0
Since 0 is less than 920, stop the division. The reminder is 0. The topmost line 000198 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 198.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}