Evaluate
\frac{91}{36}\approx 2.527777778
Factor
\frac{7 \cdot 13}{2 ^ {2} \cdot 3 ^ {2}} = 2\frac{19}{36} = 2.5277777777777777
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)182}\\\end{array}
Use the 1^{st} digit 1 from dividend 182
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)182}\\\end{array}
Since 1 is less than 72, use the next digit 8 from dividend 182 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)182}\\\end{array}
Use the 2^{nd} digit 8 from dividend 182
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)182}\\\end{array}
Since 18 is less than 72, use the next digit 2 from dividend 182 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)182}\\\end{array}
Use the 3^{rd} digit 2 from dividend 182
\begin{array}{l}\phantom{72)}002\phantom{6}\\72\overline{)182}\\\phantom{72)}\underline{\phantom{}144\phantom{}}\\\phantom{72)9}38\\\end{array}
Find closest multiple of 72 to 182. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 182 to get reminder 38. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }38
Since 38 is less than 72, stop the division. The reminder is 38. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}