Evaluate
\frac{18}{5}=3.6
Factor
\frac{2 \cdot 3 ^ {2}}{5} = 3\frac{3}{5} = 3.6
Share
Copied to clipboard
\begin{array}{l}\phantom{5000000)}\phantom{1}\\5000000\overline{)18000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 18000000
\begin{array}{l}\phantom{5000000)}0\phantom{2}\\5000000\overline{)18000000}\\\end{array}
Since 1 is less than 5000000, use the next digit 8 from dividend 18000000 and add 0 to the quotient
\begin{array}{l}\phantom{5000000)}0\phantom{3}\\5000000\overline{)18000000}\\\end{array}
Use the 2^{nd} digit 8 from dividend 18000000
\begin{array}{l}\phantom{5000000)}00\phantom{4}\\5000000\overline{)18000000}\\\end{array}
Since 18 is less than 5000000, use the next digit 0 from dividend 18000000 and add 0 to the quotient
\begin{array}{l}\phantom{5000000)}00\phantom{5}\\5000000\overline{)18000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 18000000
\begin{array}{l}\phantom{5000000)}000\phantom{6}\\5000000\overline{)18000000}\\\end{array}
Since 180 is less than 5000000, use the next digit 0 from dividend 18000000 and add 0 to the quotient
\begin{array}{l}\phantom{5000000)}000\phantom{7}\\5000000\overline{)18000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 18000000
\begin{array}{l}\phantom{5000000)}0000\phantom{8}\\5000000\overline{)18000000}\\\end{array}
Since 1800 is less than 5000000, use the next digit 0 from dividend 18000000 and add 0 to the quotient
\begin{array}{l}\phantom{5000000)}0000\phantom{9}\\5000000\overline{)18000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 18000000
\begin{array}{l}\phantom{5000000)}00000\phantom{10}\\5000000\overline{)18000000}\\\end{array}
Since 18000 is less than 5000000, use the next digit 0 from dividend 18000000 and add 0 to the quotient
\begin{array}{l}\phantom{5000000)}00000\phantom{11}\\5000000\overline{)18000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 18000000
\begin{array}{l}\phantom{5000000)}000000\phantom{12}\\5000000\overline{)18000000}\\\end{array}
Since 180000 is less than 5000000, use the next digit 0 from dividend 18000000 and add 0 to the quotient
\begin{array}{l}\phantom{5000000)}000000\phantom{13}\\5000000\overline{)18000000}\\\end{array}
Use the 7^{th} digit 0 from dividend 18000000
\begin{array}{l}\phantom{5000000)}0000000\phantom{14}\\5000000\overline{)18000000}\\\end{array}
Since 1800000 is less than 5000000, use the next digit 0 from dividend 18000000 and add 0 to the quotient
\begin{array}{l}\phantom{5000000)}0000000\phantom{15}\\5000000\overline{)18000000}\\\end{array}
Use the 8^{th} digit 0 from dividend 18000000
\begin{array}{l}\phantom{5000000)}00000003\phantom{16}\\5000000\overline{)18000000}\\\phantom{5000000)}\underline{\phantom{}15000000\phantom{}}\\\phantom{5000000)9}3000000\\\end{array}
Find closest multiple of 5000000 to 18000000. We see that 3 \times 5000000 = 15000000 is the nearest. Now subtract 15000000 from 18000000 to get reminder 3000000. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }3000000
Since 3000000 is less than 5000000, stop the division. The reminder is 3000000. The topmost line 00000003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}