18000+130x+(5 \% { x }^{ 2 } )=0
Solve for x
x=100\sqrt{133}-1300\approx -146.743740533
x=-100\sqrt{133}-1300\approx -2453.256259467
Graph
Share
Copied to clipboard
\frac{1}{20}x^{2}+130x+18000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-130±\sqrt{130^{2}-4\times \frac{1}{20}\times 18000}}{2\times \frac{1}{20}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{20} for a, 130 for b, and 18000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-130±\sqrt{16900-4\times \frac{1}{20}\times 18000}}{2\times \frac{1}{20}}
Square 130.
x=\frac{-130±\sqrt{16900-\frac{1}{5}\times 18000}}{2\times \frac{1}{20}}
Multiply -4 times \frac{1}{20}.
x=\frac{-130±\sqrt{16900-3600}}{2\times \frac{1}{20}}
Multiply -\frac{1}{5} times 18000.
x=\frac{-130±\sqrt{13300}}{2\times \frac{1}{20}}
Add 16900 to -3600.
x=\frac{-130±10\sqrt{133}}{2\times \frac{1}{20}}
Take the square root of 13300.
x=\frac{-130±10\sqrt{133}}{\frac{1}{10}}
Multiply 2 times \frac{1}{20}.
x=\frac{10\sqrt{133}-130}{\frac{1}{10}}
Now solve the equation x=\frac{-130±10\sqrt{133}}{\frac{1}{10}} when ± is plus. Add -130 to 10\sqrt{133}.
x=100\sqrt{133}-1300
Divide -130+10\sqrt{133} by \frac{1}{10} by multiplying -130+10\sqrt{133} by the reciprocal of \frac{1}{10}.
x=\frac{-10\sqrt{133}-130}{\frac{1}{10}}
Now solve the equation x=\frac{-130±10\sqrt{133}}{\frac{1}{10}} when ± is minus. Subtract 10\sqrt{133} from -130.
x=-100\sqrt{133}-1300
Divide -130-10\sqrt{133} by \frac{1}{10} by multiplying -130-10\sqrt{133} by the reciprocal of \frac{1}{10}.
x=100\sqrt{133}-1300 x=-100\sqrt{133}-1300
The equation is now solved.
\frac{1}{20}x^{2}+130x+18000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{20}x^{2}+130x+18000-18000=-18000
Subtract 18000 from both sides of the equation.
\frac{1}{20}x^{2}+130x=-18000
Subtracting 18000 from itself leaves 0.
\frac{\frac{1}{20}x^{2}+130x}{\frac{1}{20}}=-\frac{18000}{\frac{1}{20}}
Multiply both sides by 20.
x^{2}+\frac{130}{\frac{1}{20}}x=-\frac{18000}{\frac{1}{20}}
Dividing by \frac{1}{20} undoes the multiplication by \frac{1}{20}.
x^{2}+2600x=-\frac{18000}{\frac{1}{20}}
Divide 130 by \frac{1}{20} by multiplying 130 by the reciprocal of \frac{1}{20}.
x^{2}+2600x=-360000
Divide -18000 by \frac{1}{20} by multiplying -18000 by the reciprocal of \frac{1}{20}.
x^{2}+2600x+1300^{2}=-360000+1300^{2}
Divide 2600, the coefficient of the x term, by 2 to get 1300. Then add the square of 1300 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2600x+1690000=-360000+1690000
Square 1300.
x^{2}+2600x+1690000=1330000
Add -360000 to 1690000.
\left(x+1300\right)^{2}=1330000
Factor x^{2}+2600x+1690000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1300\right)^{2}}=\sqrt{1330000}
Take the square root of both sides of the equation.
x+1300=100\sqrt{133} x+1300=-100\sqrt{133}
Simplify.
x=100\sqrt{133}-1300 x=-100\sqrt{133}-1300
Subtract 1300 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}