Solve for x
x=\frac{13000\sqrt{142}-155000}{9}\approx -9.680139826
x=\frac{-13000\sqrt{142}-155000}{9}\approx -34434.764304619
Graph
Share
Copied to clipboard
1800x^{2}+62000000x+600000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-62000000±\sqrt{62000000^{2}-4\times 1800\times 600000000}}{2\times 1800}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1800 for a, 62000000 for b, and 600000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-62000000±\sqrt{3844000000000000-4\times 1800\times 600000000}}{2\times 1800}
Square 62000000.
x=\frac{-62000000±\sqrt{3844000000000000-7200\times 600000000}}{2\times 1800}
Multiply -4 times 1800.
x=\frac{-62000000±\sqrt{3844000000000000-4320000000000}}{2\times 1800}
Multiply -7200 times 600000000.
x=\frac{-62000000±\sqrt{3839680000000000}}{2\times 1800}
Add 3844000000000000 to -4320000000000.
x=\frac{-62000000±5200000\sqrt{142}}{2\times 1800}
Take the square root of 3839680000000000.
x=\frac{-62000000±5200000\sqrt{142}}{3600}
Multiply 2 times 1800.
x=\frac{5200000\sqrt{142}-62000000}{3600}
Now solve the equation x=\frac{-62000000±5200000\sqrt{142}}{3600} when ± is plus. Add -62000000 to 5200000\sqrt{142}.
x=\frac{13000\sqrt{142}-155000}{9}
Divide -62000000+5200000\sqrt{142} by 3600.
x=\frac{-5200000\sqrt{142}-62000000}{3600}
Now solve the equation x=\frac{-62000000±5200000\sqrt{142}}{3600} when ± is minus. Subtract 5200000\sqrt{142} from -62000000.
x=\frac{-13000\sqrt{142}-155000}{9}
Divide -62000000-5200000\sqrt{142} by 3600.
x=\frac{13000\sqrt{142}-155000}{9} x=\frac{-13000\sqrt{142}-155000}{9}
The equation is now solved.
1800x^{2}+62000000x+600000000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1800x^{2}+62000000x+600000000-600000000=-600000000
Subtract 600000000 from both sides of the equation.
1800x^{2}+62000000x=-600000000
Subtracting 600000000 from itself leaves 0.
\frac{1800x^{2}+62000000x}{1800}=-\frac{600000000}{1800}
Divide both sides by 1800.
x^{2}+\frac{62000000}{1800}x=-\frac{600000000}{1800}
Dividing by 1800 undoes the multiplication by 1800.
x^{2}+\frac{310000}{9}x=-\frac{600000000}{1800}
Reduce the fraction \frac{62000000}{1800} to lowest terms by extracting and canceling out 200.
x^{2}+\frac{310000}{9}x=-\frac{1000000}{3}
Reduce the fraction \frac{-600000000}{1800} to lowest terms by extracting and canceling out 600.
x^{2}+\frac{310000}{9}x+\left(\frac{155000}{9}\right)^{2}=-\frac{1000000}{3}+\left(\frac{155000}{9}\right)^{2}
Divide \frac{310000}{9}, the coefficient of the x term, by 2 to get \frac{155000}{9}. Then add the square of \frac{155000}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}=-\frac{1000000}{3}+\frac{24025000000}{81}
Square \frac{155000}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}=\frac{23998000000}{81}
Add -\frac{1000000}{3} to \frac{24025000000}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{155000}{9}\right)^{2}=\frac{23998000000}{81}
Factor x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{155000}{9}\right)^{2}}=\sqrt{\frac{23998000000}{81}}
Take the square root of both sides of the equation.
x+\frac{155000}{9}=\frac{13000\sqrt{142}}{9} x+\frac{155000}{9}=-\frac{13000\sqrt{142}}{9}
Simplify.
x=\frac{13000\sqrt{142}-155000}{9} x=\frac{-13000\sqrt{142}-155000}{9}
Subtract \frac{155000}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}