Evaluate
\frac{450}{83}\approx 5.421686747
Factor
\frac{2 \cdot 3 ^ {2} \cdot 5 ^ {2}}{83} = 5\frac{35}{83} = 5.421686746987952
Share
Copied to clipboard
\begin{array}{l}\phantom{332)}\phantom{1}\\332\overline{)1800}\\\end{array}
Use the 1^{st} digit 1 from dividend 1800
\begin{array}{l}\phantom{332)}0\phantom{2}\\332\overline{)1800}\\\end{array}
Since 1 is less than 332, use the next digit 8 from dividend 1800 and add 0 to the quotient
\begin{array}{l}\phantom{332)}0\phantom{3}\\332\overline{)1800}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1800
\begin{array}{l}\phantom{332)}00\phantom{4}\\332\overline{)1800}\\\end{array}
Since 18 is less than 332, use the next digit 0 from dividend 1800 and add 0 to the quotient
\begin{array}{l}\phantom{332)}00\phantom{5}\\332\overline{)1800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1800
\begin{array}{l}\phantom{332)}000\phantom{6}\\332\overline{)1800}\\\end{array}
Since 180 is less than 332, use the next digit 0 from dividend 1800 and add 0 to the quotient
\begin{array}{l}\phantom{332)}000\phantom{7}\\332\overline{)1800}\\\end{array}
Use the 4^{th} digit 0 from dividend 1800
\begin{array}{l}\phantom{332)}0005\phantom{8}\\332\overline{)1800}\\\phantom{332)}\underline{\phantom{}1660\phantom{}}\\\phantom{332)9}140\\\end{array}
Find closest multiple of 332 to 1800. We see that 5 \times 332 = 1660 is the nearest. Now subtract 1660 from 1800 to get reminder 140. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }140
Since 140 is less than 332, stop the division. The reminder is 140. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}