Solve for x
x=5\left(y-54\right)
Solve for y
y=\frac{x+270}{5}
Graph
Share
Copied to clipboard
180-x=450-5y
Use the distributive property to multiply 5 by 90-y.
-x=450-5y-180
Subtract 180 from both sides.
-x=270-5y
Subtract 180 from 450 to get 270.
\frac{-x}{-1}=\frac{270-5y}{-1}
Divide both sides by -1.
x=\frac{270-5y}{-1}
Dividing by -1 undoes the multiplication by -1.
x=5y-270
Divide 270-5y by -1.
180-x=450-5y
Use the distributive property to multiply 5 by 90-y.
450-5y=180-x
Swap sides so that all variable terms are on the left hand side.
-5y=180-x-450
Subtract 450 from both sides.
-5y=-270-x
Subtract 450 from 180 to get -270.
-5y=-x-270
The equation is in standard form.
\frac{-5y}{-5}=\frac{-x-270}{-5}
Divide both sides by -5.
y=\frac{-x-270}{-5}
Dividing by -5 undoes the multiplication by -5.
y=\frac{x}{5}+54
Divide -270-x by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}