Evaluate
\frac{18}{5}=3.6
Factor
\frac{2 \cdot 3 ^ {2}}{5} = 3\frac{3}{5} = 3.6
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)180}\\\end{array}
Use the 1^{st} digit 1 from dividend 180
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)180}\\\end{array}
Since 1 is less than 50, use the next digit 8 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)180}\\\end{array}
Use the 2^{nd} digit 8 from dividend 180
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)180}\\\end{array}
Since 18 is less than 50, use the next digit 0 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)180}\\\end{array}
Use the 3^{rd} digit 0 from dividend 180
\begin{array}{l}\phantom{50)}003\phantom{6}\\50\overline{)180}\\\phantom{50)}\underline{\phantom{}150\phantom{}}\\\phantom{50)9}30\\\end{array}
Find closest multiple of 50 to 180. We see that 3 \times 50 = 150 is the nearest. Now subtract 150 from 180 to get reminder 30. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }30
Since 30 is less than 50, stop the division. The reminder is 30. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}