Evaluate
\frac{60}{47}\approx 1.276595745
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5}{47} = 1\frac{13}{47} = 1.2765957446808511
Share
Copied to clipboard
\begin{array}{l}\phantom{141)}\phantom{1}\\141\overline{)180}\\\end{array}
Use the 1^{st} digit 1 from dividend 180
\begin{array}{l}\phantom{141)}0\phantom{2}\\141\overline{)180}\\\end{array}
Since 1 is less than 141, use the next digit 8 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{141)}0\phantom{3}\\141\overline{)180}\\\end{array}
Use the 2^{nd} digit 8 from dividend 180
\begin{array}{l}\phantom{141)}00\phantom{4}\\141\overline{)180}\\\end{array}
Since 18 is less than 141, use the next digit 0 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{141)}00\phantom{5}\\141\overline{)180}\\\end{array}
Use the 3^{rd} digit 0 from dividend 180
\begin{array}{l}\phantom{141)}001\phantom{6}\\141\overline{)180}\\\phantom{141)}\underline{\phantom{}141\phantom{}}\\\phantom{141)9}39\\\end{array}
Find closest multiple of 141 to 180. We see that 1 \times 141 = 141 is the nearest. Now subtract 141 from 180 to get reminder 39. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }39
Since 39 is less than 141, stop the division. The reminder is 39. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}