Solve for n
n=\sqrt{109}-7\approx 3.440306509
n=-\sqrt{109}-7\approx -17.440306509
Share
Copied to clipboard
360=n\left(90+6n-6\right)
Multiply both sides of the equation by 2.
360=n\left(84+6n\right)
Subtract 6 from 90 to get 84.
360=84n+6n^{2}
Use the distributive property to multiply n by 84+6n.
84n+6n^{2}=360
Swap sides so that all variable terms are on the left hand side.
84n+6n^{2}-360=0
Subtract 360 from both sides.
6n^{2}+84n-360=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-84±\sqrt{84^{2}-4\times 6\left(-360\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 84 for b, and -360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-84±\sqrt{7056-4\times 6\left(-360\right)}}{2\times 6}
Square 84.
n=\frac{-84±\sqrt{7056-24\left(-360\right)}}{2\times 6}
Multiply -4 times 6.
n=\frac{-84±\sqrt{7056+8640}}{2\times 6}
Multiply -24 times -360.
n=\frac{-84±\sqrt{15696}}{2\times 6}
Add 7056 to 8640.
n=\frac{-84±12\sqrt{109}}{2\times 6}
Take the square root of 15696.
n=\frac{-84±12\sqrt{109}}{12}
Multiply 2 times 6.
n=\frac{12\sqrt{109}-84}{12}
Now solve the equation n=\frac{-84±12\sqrt{109}}{12} when ± is plus. Add -84 to 12\sqrt{109}.
n=\sqrt{109}-7
Divide -84+12\sqrt{109} by 12.
n=\frac{-12\sqrt{109}-84}{12}
Now solve the equation n=\frac{-84±12\sqrt{109}}{12} when ± is minus. Subtract 12\sqrt{109} from -84.
n=-\sqrt{109}-7
Divide -84-12\sqrt{109} by 12.
n=\sqrt{109}-7 n=-\sqrt{109}-7
The equation is now solved.
360=n\left(90+6n-6\right)
Multiply both sides of the equation by 2.
360=n\left(84+6n\right)
Subtract 6 from 90 to get 84.
360=84n+6n^{2}
Use the distributive property to multiply n by 84+6n.
84n+6n^{2}=360
Swap sides so that all variable terms are on the left hand side.
6n^{2}+84n=360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6n^{2}+84n}{6}=\frac{360}{6}
Divide both sides by 6.
n^{2}+\frac{84}{6}n=\frac{360}{6}
Dividing by 6 undoes the multiplication by 6.
n^{2}+14n=\frac{360}{6}
Divide 84 by 6.
n^{2}+14n=60
Divide 360 by 6.
n^{2}+14n+7^{2}=60+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+14n+49=60+49
Square 7.
n^{2}+14n+49=109
Add 60 to 49.
\left(n+7\right)^{2}=109
Factor n^{2}+14n+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+7\right)^{2}}=\sqrt{109}
Take the square root of both sides of the equation.
n+7=\sqrt{109} n+7=-\sqrt{109}
Simplify.
n=\sqrt{109}-7 n=-\sqrt{109}-7
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}