Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18=x^{2}-3x
Use the distributive property to multiply x by x-3.
x^{2}-3x=18
Swap sides so that all variable terms are on the left hand side.
x^{2}-3x-18=0
Subtract 18 from both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-18\right)}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2}
Multiply -4 times -18.
x=\frac{-\left(-3\right)±\sqrt{81}}{2}
Add 9 to 72.
x=\frac{-\left(-3\right)±9}{2}
Take the square root of 81.
x=\frac{3±9}{2}
The opposite of -3 is 3.
x=\frac{12}{2}
Now solve the equation x=\frac{3±9}{2} when ± is plus. Add 3 to 9.
x=6
Divide 12 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{3±9}{2} when ± is minus. Subtract 9 from 3.
x=-3
Divide -6 by 2.
x=6 x=-3
The equation is now solved.
18=x^{2}-3x
Use the distributive property to multiply x by x-3.
x^{2}-3x=18
Swap sides so that all variable terms are on the left hand side.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=18+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=18+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{81}{4}
Add 18 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{9}{2} x-\frac{3}{2}=-\frac{9}{2}
Simplify.
x=6 x=-3
Add \frac{3}{2} to both sides of the equation.