Solve for x (complex solution)
x=\frac{\sqrt[4]{12168}e^{\frac{\left(\arctan(\frac{\sqrt{194}}{12})+\pi \right)i}{2}}}{6}\approx -0.729427647+1.59124627i
x=\frac{\sqrt[4]{12168}e^{\frac{\arctan(\frac{\sqrt{194}}{12})i+3\pi i}{2}}}{6}\approx 0.729427647-1.59124627i
x=\frac{\sqrt[4]{12168}e^{\frac{-\arctan(\frac{\sqrt{194}}{12})i+3\pi i}{2}}}{6}\approx -0.729427647-1.59124627i
x=\frac{\sqrt[4]{12168}e^{\frac{-\arctan(\frac{\sqrt{194}}{12})i+\pi i}{2}}}{6}\approx 0.729427647+1.59124627i
Graph
Share
Copied to clipboard
18t^{2}+72t+169=0
Substitute t for x^{2}.
t=\frac{-72±\sqrt{72^{2}-4\times 18\times 169}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 18 for a, 72 for b, and 169 for c in the quadratic formula.
t=\frac{-72±\sqrt{-6984}}{36}
Do the calculations.
t=\frac{\sqrt{194}i}{6}-2 t=-\frac{\sqrt{194}i}{6}-2
Solve the equation t=\frac{-72±\sqrt{-6984}}{36} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{12168}e^{\frac{-\arctan(\frac{\sqrt{194}}{12})i+3\pi i}{2}}}{6} x=\frac{\sqrt[4]{12168}e^{\frac{-\arctan(\frac{\sqrt{194}}{12})i+\pi i}{2}}}{6} x=\frac{\sqrt[4]{12168}e^{\frac{\arctan(\frac{\sqrt{194}}{12})i+3\pi i}{2}}}{6} x=\frac{\sqrt[4]{12168}e^{\frac{\left(\arctan(\frac{\sqrt{194}}{12})+\pi \right)i}{2}}}{6}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}