Evaluate
-\frac{6x\left(3-22x\right)}{19}
Expand
\frac{132x^{2}-18x}{19}
Graph
Share
Copied to clipboard
\frac{18x\left(3+11x\left(-2\right)\right)}{-2\times 4-7\times 7}
Divide -42 by -14 to get 3.
\frac{18x\left(3-22x\right)}{-2\times 4-7\times 7}
Multiply 11 and -2 to get -22.
\frac{18x\left(3-22x\right)}{-8-7\times 7}
Multiply -2 and 4 to get -8.
\frac{18x\left(3-22x\right)}{-8-49}
Multiply 7 and 7 to get 49.
\frac{18x\left(3-22x\right)}{-57}
Subtract 49 from -8 to get -57.
-\frac{6}{19}x\left(3-22x\right)
Divide 18x\left(3-22x\right) by -57 to get -\frac{6}{19}x\left(3-22x\right).
-\frac{6}{19}x\times 3-\frac{6}{19}x\left(-22\right)x
Use the distributive property to multiply -\frac{6}{19}x by 3-22x.
-\frac{6}{19}x\times 3-\frac{6}{19}x^{2}\left(-22\right)
Multiply x and x to get x^{2}.
\frac{-6\times 3}{19}x-\frac{6}{19}x^{2}\left(-22\right)
Express -\frac{6}{19}\times 3 as a single fraction.
\frac{-18}{19}x-\frac{6}{19}x^{2}\left(-22\right)
Multiply -6 and 3 to get -18.
-\frac{18}{19}x-\frac{6}{19}x^{2}\left(-22\right)
Fraction \frac{-18}{19} can be rewritten as -\frac{18}{19} by extracting the negative sign.
-\frac{18}{19}x+\frac{-6\left(-22\right)}{19}x^{2}
Express -\frac{6}{19}\left(-22\right) as a single fraction.
-\frac{18}{19}x+\frac{132}{19}x^{2}
Multiply -6 and -22 to get 132.
\frac{18x\left(3+11x\left(-2\right)\right)}{-2\times 4-7\times 7}
Divide -42 by -14 to get 3.
\frac{18x\left(3-22x\right)}{-2\times 4-7\times 7}
Multiply 11 and -2 to get -22.
\frac{18x\left(3-22x\right)}{-8-7\times 7}
Multiply -2 and 4 to get -8.
\frac{18x\left(3-22x\right)}{-8-49}
Multiply 7 and 7 to get 49.
\frac{18x\left(3-22x\right)}{-57}
Subtract 49 from -8 to get -57.
-\frac{6}{19}x\left(3-22x\right)
Divide 18x\left(3-22x\right) by -57 to get -\frac{6}{19}x\left(3-22x\right).
-\frac{6}{19}x\times 3-\frac{6}{19}x\left(-22\right)x
Use the distributive property to multiply -\frac{6}{19}x by 3-22x.
-\frac{6}{19}x\times 3-\frac{6}{19}x^{2}\left(-22\right)
Multiply x and x to get x^{2}.
\frac{-6\times 3}{19}x-\frac{6}{19}x^{2}\left(-22\right)
Express -\frac{6}{19}\times 3 as a single fraction.
\frac{-18}{19}x-\frac{6}{19}x^{2}\left(-22\right)
Multiply -6 and 3 to get -18.
-\frac{18}{19}x-\frac{6}{19}x^{2}\left(-22\right)
Fraction \frac{-18}{19} can be rewritten as -\frac{18}{19} by extracting the negative sign.
-\frac{18}{19}x+\frac{-6\left(-22\right)}{19}x^{2}
Express -\frac{6}{19}\left(-22\right) as a single fraction.
-\frac{18}{19}x+\frac{132}{19}x^{2}
Multiply -6 and -22 to get 132.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}