Evaluate
9-6x
Expand
9-6x
Graph
Share
Copied to clipboard
18\left(\frac{2x}{9}+\frac{3}{9}\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 3 is 9. Multiply \frac{1}{3} times \frac{3}{3}.
18\times \frac{2x+3}{9}-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Since \frac{2x}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
2\left(2x+3\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Cancel out 9, the greatest common factor in 18 and 9.
2\left(2x+3\right)-12\left(\frac{2\times 5x}{12}-\frac{3}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 4 is 12. Multiply \frac{5x}{6} times \frac{2}{2}. Multiply \frac{1}{4} times \frac{3}{3}.
2\left(2x+3\right)-12\times \frac{2\times 5x-3}{12}
Since \frac{2\times 5x}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
2\left(2x+3\right)-12\times \frac{10x-3}{12}
Do the multiplications in 2\times 5x-3.
2\left(2x+3\right)-\left(10x-3\right)
Cancel out 12 and 12.
4x+6-\left(10x-3\right)
Use the distributive property to multiply 2 by 2x+3.
4x+6-10x-\left(-3\right)
To find the opposite of 10x-3, find the opposite of each term.
4x+6-10x+3
The opposite of -3 is 3.
-6x+6+3
Combine 4x and -10x to get -6x.
-6x+9
Add 6 and 3 to get 9.
18\left(\frac{2x}{9}+\frac{3}{9}\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 3 is 9. Multiply \frac{1}{3} times \frac{3}{3}.
18\times \frac{2x+3}{9}-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Since \frac{2x}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
2\left(2x+3\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Cancel out 9, the greatest common factor in 18 and 9.
2\left(2x+3\right)-12\left(\frac{2\times 5x}{12}-\frac{3}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 4 is 12. Multiply \frac{5x}{6} times \frac{2}{2}. Multiply \frac{1}{4} times \frac{3}{3}.
2\left(2x+3\right)-12\times \frac{2\times 5x-3}{12}
Since \frac{2\times 5x}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
2\left(2x+3\right)-12\times \frac{10x-3}{12}
Do the multiplications in 2\times 5x-3.
2\left(2x+3\right)-\left(10x-3\right)
Cancel out 12 and 12.
4x+6-\left(10x-3\right)
Use the distributive property to multiply 2 by 2x+3.
4x+6-10x-\left(-3\right)
To find the opposite of 10x-3, find the opposite of each term.
4x+6-10x+3
The opposite of -3 is 3.
-6x+6+3
Combine 4x and -10x to get -6x.
-6x+9
Add 6 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}