Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(6x^{2}-13x+6\right)
Factor out 3.
a+b=-13 ab=6\times 6=36
Consider 6x^{2}-13x+6. Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-9 b=-4
The solution is the pair that gives sum -13.
\left(6x^{2}-9x\right)+\left(-4x+6\right)
Rewrite 6x^{2}-13x+6 as \left(6x^{2}-9x\right)+\left(-4x+6\right).
3x\left(2x-3\right)-2\left(2x-3\right)
Factor out 3x in the first and -2 in the second group.
\left(2x-3\right)\left(3x-2\right)
Factor out common term 2x-3 by using distributive property.
3\left(2x-3\right)\left(3x-2\right)
Rewrite the complete factored expression.
18x^{2}-39x+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 18\times 18}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-39\right)±\sqrt{1521-4\times 18\times 18}}{2\times 18}
Square -39.
x=\frac{-\left(-39\right)±\sqrt{1521-72\times 18}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-39\right)±\sqrt{1521-1296}}{2\times 18}
Multiply -72 times 18.
x=\frac{-\left(-39\right)±\sqrt{225}}{2\times 18}
Add 1521 to -1296.
x=\frac{-\left(-39\right)±15}{2\times 18}
Take the square root of 225.
x=\frac{39±15}{2\times 18}
The opposite of -39 is 39.
x=\frac{39±15}{36}
Multiply 2 times 18.
x=\frac{54}{36}
Now solve the equation x=\frac{39±15}{36} when ± is plus. Add 39 to 15.
x=\frac{3}{2}
Reduce the fraction \frac{54}{36} to lowest terms by extracting and canceling out 18.
x=\frac{24}{36}
Now solve the equation x=\frac{39±15}{36} when ± is minus. Subtract 15 from 39.
x=\frac{2}{3}
Reduce the fraction \frac{24}{36} to lowest terms by extracting and canceling out 12.
18x^{2}-39x+18=18\left(x-\frac{3}{2}\right)\left(x-\frac{2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and \frac{2}{3} for x_{2}.
18x^{2}-39x+18=18\times \frac{2x-3}{2}\left(x-\frac{2}{3}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
18x^{2}-39x+18=18\times \frac{2x-3}{2}\times \frac{3x-2}{3}
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
18x^{2}-39x+18=18\times \frac{\left(2x-3\right)\left(3x-2\right)}{2\times 3}
Multiply \frac{2x-3}{2} times \frac{3x-2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
18x^{2}-39x+18=18\times \frac{\left(2x-3\right)\left(3x-2\right)}{6}
Multiply 2 times 3.
18x^{2}-39x+18=3\left(2x-3\right)\left(3x-2\right)
Cancel out 6, the greatest common factor in 18 and 6.