Solve for x
x = \frac{\sqrt{278}}{10} \approx 1.6673332
x = -\frac{\sqrt{278}}{10} \approx -1.6673332
Graph
Share
Copied to clipboard
18x^{2}-114+32x^{2}=25
Subtract 78 from -36 to get -114.
50x^{2}-114=25
Combine 18x^{2} and 32x^{2} to get 50x^{2}.
50x^{2}=25+114
Add 114 to both sides.
50x^{2}=139
Add 25 and 114 to get 139.
x^{2}=\frac{139}{50}
Divide both sides by 50.
x=\frac{\sqrt{278}}{10} x=-\frac{\sqrt{278}}{10}
Take the square root of both sides of the equation.
18x^{2}-114+32x^{2}=25
Subtract 78 from -36 to get -114.
50x^{2}-114=25
Combine 18x^{2} and 32x^{2} to get 50x^{2}.
50x^{2}-114-25=0
Subtract 25 from both sides.
50x^{2}-139=0
Subtract 25 from -114 to get -139.
x=\frac{0±\sqrt{0^{2}-4\times 50\left(-139\right)}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, 0 for b, and -139 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 50\left(-139\right)}}{2\times 50}
Square 0.
x=\frac{0±\sqrt{-200\left(-139\right)}}{2\times 50}
Multiply -4 times 50.
x=\frac{0±\sqrt{27800}}{2\times 50}
Multiply -200 times -139.
x=\frac{0±10\sqrt{278}}{2\times 50}
Take the square root of 27800.
x=\frac{0±10\sqrt{278}}{100}
Multiply 2 times 50.
x=\frac{\sqrt{278}}{10}
Now solve the equation x=\frac{0±10\sqrt{278}}{100} when ± is plus.
x=-\frac{\sqrt{278}}{10}
Now solve the equation x=\frac{0±10\sqrt{278}}{100} when ± is minus.
x=\frac{\sqrt{278}}{10} x=-\frac{\sqrt{278}}{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}