Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x^{2}+7x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 18\left(-6\right)}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\times 18\left(-6\right)}}{2\times 18}
Square 7.
x=\frac{-7±\sqrt{49-72\left(-6\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-7±\sqrt{49+432}}{2\times 18}
Multiply -72 times -6.
x=\frac{-7±\sqrt{481}}{2\times 18}
Add 49 to 432.
x=\frac{-7±\sqrt{481}}{36}
Multiply 2 times 18.
x=\frac{\sqrt{481}-7}{36}
Now solve the equation x=\frac{-7±\sqrt{481}}{36} when ± is plus. Add -7 to \sqrt{481}.
x=\frac{-\sqrt{481}-7}{36}
Now solve the equation x=\frac{-7±\sqrt{481}}{36} when ± is minus. Subtract \sqrt{481} from -7.
18x^{2}+7x-6=18\left(x-\frac{\sqrt{481}-7}{36}\right)\left(x-\frac{-\sqrt{481}-7}{36}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7+\sqrt{481}}{36} for x_{1} and \frac{-7-\sqrt{481}}{36} for x_{2}.