Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-8d^{2}+21d+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-21±\sqrt{21^{2}-4\left(-8\right)\times 18}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-21±\sqrt{441-4\left(-8\right)\times 18}}{2\left(-8\right)}
Square 21.
d=\frac{-21±\sqrt{441+32\times 18}}{2\left(-8\right)}
Multiply -4 times -8.
d=\frac{-21±\sqrt{441+576}}{2\left(-8\right)}
Multiply 32 times 18.
d=\frac{-21±\sqrt{1017}}{2\left(-8\right)}
Add 441 to 576.
d=\frac{-21±3\sqrt{113}}{2\left(-8\right)}
Take the square root of 1017.
d=\frac{-21±3\sqrt{113}}{-16}
Multiply 2 times -8.
d=\frac{3\sqrt{113}-21}{-16}
Now solve the equation d=\frac{-21±3\sqrt{113}}{-16} when ± is plus. Add -21 to 3\sqrt{113}.
d=\frac{21-3\sqrt{113}}{16}
Divide -21+3\sqrt{113} by -16.
d=\frac{-3\sqrt{113}-21}{-16}
Now solve the equation d=\frac{-21±3\sqrt{113}}{-16} when ± is minus. Subtract 3\sqrt{113} from -21.
d=\frac{3\sqrt{113}+21}{16}
Divide -21-3\sqrt{113} by -16.
-8d^{2}+21d+18=-8\left(d-\frac{21-3\sqrt{113}}{16}\right)\left(d-\frac{3\sqrt{113}+21}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{21-3\sqrt{113}}{16} for x_{1} and \frac{21+3\sqrt{113}}{16} for x_{2}.