Evaluate
\frac{179}{60}\approx 2.983333333
Factor
\frac{179}{2 ^ {2} \cdot 3 \cdot 5} = 2\frac{59}{60} = 2.9833333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)179}\\\end{array}
Use the 1^{st} digit 1 from dividend 179
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)179}\\\end{array}
Since 1 is less than 60, use the next digit 7 from dividend 179 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)179}\\\end{array}
Use the 2^{nd} digit 7 from dividend 179
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)179}\\\end{array}
Since 17 is less than 60, use the next digit 9 from dividend 179 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)179}\\\end{array}
Use the 3^{rd} digit 9 from dividend 179
\begin{array}{l}\phantom{60)}002\phantom{6}\\60\overline{)179}\\\phantom{60)}\underline{\phantom{}120\phantom{}}\\\phantom{60)9}59\\\end{array}
Find closest multiple of 60 to 179. We see that 2 \times 60 = 120 is the nearest. Now subtract 120 from 179 to get reminder 59. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }59
Since 59 is less than 60, stop the division. The reminder is 59. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}