Evaluate
\frac{43347}{121}\approx 358.239669421
Factor
\frac{3 \cdot 14449}{11 ^ {2}} = 358\frac{29}{121} = 358.2396694214876
Share
Copied to clipboard
\begin{array}{l}\phantom{4961)}\phantom{1}\\4961\overline{)1777227}\\\end{array}
Use the 1^{st} digit 1 from dividend 1777227
\begin{array}{l}\phantom{4961)}0\phantom{2}\\4961\overline{)1777227}\\\end{array}
Since 1 is less than 4961, use the next digit 7 from dividend 1777227 and add 0 to the quotient
\begin{array}{l}\phantom{4961)}0\phantom{3}\\4961\overline{)1777227}\\\end{array}
Use the 2^{nd} digit 7 from dividend 1777227
\begin{array}{l}\phantom{4961)}00\phantom{4}\\4961\overline{)1777227}\\\end{array}
Since 17 is less than 4961, use the next digit 7 from dividend 1777227 and add 0 to the quotient
\begin{array}{l}\phantom{4961)}00\phantom{5}\\4961\overline{)1777227}\\\end{array}
Use the 3^{rd} digit 7 from dividend 1777227
\begin{array}{l}\phantom{4961)}000\phantom{6}\\4961\overline{)1777227}\\\end{array}
Since 177 is less than 4961, use the next digit 7 from dividend 1777227 and add 0 to the quotient
\begin{array}{l}\phantom{4961)}000\phantom{7}\\4961\overline{)1777227}\\\end{array}
Use the 4^{th} digit 7 from dividend 1777227
\begin{array}{l}\phantom{4961)}0000\phantom{8}\\4961\overline{)1777227}\\\end{array}
Since 1777 is less than 4961, use the next digit 2 from dividend 1777227 and add 0 to the quotient
\begin{array}{l}\phantom{4961)}0000\phantom{9}\\4961\overline{)1777227}\\\end{array}
Use the 5^{th} digit 2 from dividend 1777227
\begin{array}{l}\phantom{4961)}00003\phantom{10}\\4961\overline{)1777227}\\\phantom{4961)}\underline{\phantom{}14883\phantom{99}}\\\phantom{4961)9}2889\\\end{array}
Find closest multiple of 4961 to 17772. We see that 3 \times 4961 = 14883 is the nearest. Now subtract 14883 from 17772 to get reminder 2889. Add 3 to quotient.
\begin{array}{l}\phantom{4961)}00003\phantom{11}\\4961\overline{)1777227}\\\phantom{4961)}\underline{\phantom{}14883\phantom{99}}\\\phantom{4961)9}28892\\\end{array}
Use the 6^{th} digit 2 from dividend 1777227
\begin{array}{l}\phantom{4961)}000035\phantom{12}\\4961\overline{)1777227}\\\phantom{4961)}\underline{\phantom{}14883\phantom{99}}\\\phantom{4961)9}28892\\\phantom{4961)}\underline{\phantom{9}24805\phantom{9}}\\\phantom{4961)99}4087\\\end{array}
Find closest multiple of 4961 to 28892. We see that 5 \times 4961 = 24805 is the nearest. Now subtract 24805 from 28892 to get reminder 4087. Add 5 to quotient.
\begin{array}{l}\phantom{4961)}000035\phantom{13}\\4961\overline{)1777227}\\\phantom{4961)}\underline{\phantom{}14883\phantom{99}}\\\phantom{4961)9}28892\\\phantom{4961)}\underline{\phantom{9}24805\phantom{9}}\\\phantom{4961)99}40877\\\end{array}
Use the 7^{th} digit 7 from dividend 1777227
\begin{array}{l}\phantom{4961)}0000358\phantom{14}\\4961\overline{)1777227}\\\phantom{4961)}\underline{\phantom{}14883\phantom{99}}\\\phantom{4961)9}28892\\\phantom{4961)}\underline{\phantom{9}24805\phantom{9}}\\\phantom{4961)99}40877\\\phantom{4961)}\underline{\phantom{99}39688\phantom{}}\\\phantom{4961)999}1189\\\end{array}
Find closest multiple of 4961 to 40877. We see that 8 \times 4961 = 39688 is the nearest. Now subtract 39688 from 40877 to get reminder 1189. Add 8 to quotient.
\text{Quotient: }358 \text{Reminder: }1189
Since 1189 is less than 4961, stop the division. The reminder is 1189. The topmost line 0000358 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 358.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}