Solve for x
x = \frac{11}{8} = 1\frac{3}{8} = 1.375
Graph
Share
Copied to clipboard
176x-121=64x^{2}
Subtract 121 from both sides.
176x-121-64x^{2}=0
Subtract 64x^{2} from both sides.
-64x^{2}+176x-121=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-176±\sqrt{176^{2}-4\left(-64\right)\left(-121\right)}}{2\left(-64\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -64 for a, 176 for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-176±\sqrt{30976-4\left(-64\right)\left(-121\right)}}{2\left(-64\right)}
Square 176.
x=\frac{-176±\sqrt{30976+256\left(-121\right)}}{2\left(-64\right)}
Multiply -4 times -64.
x=\frac{-176±\sqrt{30976-30976}}{2\left(-64\right)}
Multiply 256 times -121.
x=\frac{-176±\sqrt{0}}{2\left(-64\right)}
Add 30976 to -30976.
x=-\frac{176}{2\left(-64\right)}
Take the square root of 0.
x=-\frac{176}{-128}
Multiply 2 times -64.
x=\frac{11}{8}
Reduce the fraction \frac{-176}{-128} to lowest terms by extracting and canceling out 16.
176x-64x^{2}=121
Subtract 64x^{2} from both sides.
-64x^{2}+176x=121
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-64x^{2}+176x}{-64}=\frac{121}{-64}
Divide both sides by -64.
x^{2}+\frac{176}{-64}x=\frac{121}{-64}
Dividing by -64 undoes the multiplication by -64.
x^{2}-\frac{11}{4}x=\frac{121}{-64}
Reduce the fraction \frac{176}{-64} to lowest terms by extracting and canceling out 16.
x^{2}-\frac{11}{4}x=-\frac{121}{64}
Divide 121 by -64.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=-\frac{121}{64}+\left(-\frac{11}{8}\right)^{2}
Divide -\frac{11}{4}, the coefficient of the x term, by 2 to get -\frac{11}{8}. Then add the square of -\frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{-121+121}{64}
Square -\frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{4}x+\frac{121}{64}=0
Add -\frac{121}{64} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{8}\right)^{2}=0
Factor x^{2}-\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{11}{8}=0 x-\frac{11}{8}=0
Simplify.
x=\frac{11}{8} x=\frac{11}{8}
Add \frac{11}{8} to both sides of the equation.
x=\frac{11}{8}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}