Evaluate
\frac{176}{13}\approx 13.538461538
Factor
\frac{2 ^ {4} \cdot 11}{13} = 13\frac{7}{13} = 13.538461538461538
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)176}\\\end{array}
Use the 1^{st} digit 1 from dividend 176
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)176}\\\end{array}
Since 1 is less than 13, use the next digit 7 from dividend 176 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)176}\\\end{array}
Use the 2^{nd} digit 7 from dividend 176
\begin{array}{l}\phantom{13)}01\phantom{4}\\13\overline{)176}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}4\\\end{array}
Find closest multiple of 13 to 17. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 17 to get reminder 4. Add 1 to quotient.
\begin{array}{l}\phantom{13)}01\phantom{5}\\13\overline{)176}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}46\\\end{array}
Use the 3^{rd} digit 6 from dividend 176
\begin{array}{l}\phantom{13)}013\phantom{6}\\13\overline{)176}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}46\\\phantom{13)}\underline{\phantom{9}39\phantom{}}\\\phantom{13)99}7\\\end{array}
Find closest multiple of 13 to 46. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 46 to get reminder 7. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }7
Since 7 is less than 13, stop the division. The reminder is 7. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}