Evaluate
\frac{175}{18}\approx 9.722222222
Factor
\frac{5 ^ {2} \cdot 7}{2 \cdot 3 ^ {2}} = 9\frac{13}{18} = 9.722222222222221
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)175}\\\end{array}
Use the 1^{st} digit 1 from dividend 175
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)175}\\\end{array}
Since 1 is less than 18, use the next digit 7 from dividend 175 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)175}\\\end{array}
Use the 2^{nd} digit 7 from dividend 175
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)175}\\\end{array}
Since 17 is less than 18, use the next digit 5 from dividend 175 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)175}\\\end{array}
Use the 3^{rd} digit 5 from dividend 175
\begin{array}{l}\phantom{18)}009\phantom{6}\\18\overline{)175}\\\phantom{18)}\underline{\phantom{}162\phantom{}}\\\phantom{18)9}13\\\end{array}
Find closest multiple of 18 to 175. We see that 9 \times 18 = 162 is the nearest. Now subtract 162 from 175 to get reminder 13. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }13
Since 13 is less than 18, stop the division. The reminder is 13. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}