Solve for x
x=-10+\frac{1739}{y}
y\neq 0
Solve for y
y=\frac{1739}{x+10}
x\neq -10
Graph
Share
Copied to clipboard
1739=10y+xy
Use the distributive property to multiply 10+x by y.
10y+xy=1739
Swap sides so that all variable terms are on the left hand side.
xy=1739-10y
Subtract 10y from both sides.
yx=1739-10y
The equation is in standard form.
\frac{yx}{y}=\frac{1739-10y}{y}
Divide both sides by y.
x=\frac{1739-10y}{y}
Dividing by y undoes the multiplication by y.
x=-10+\frac{1739}{y}
Divide 1739-10y by y.
1739=10y+xy
Use the distributive property to multiply 10+x by y.
10y+xy=1739
Swap sides so that all variable terms are on the left hand side.
\left(10+x\right)y=1739
Combine all terms containing y.
\left(x+10\right)y=1739
The equation is in standard form.
\frac{\left(x+10\right)y}{x+10}=\frac{1739}{x+10}
Divide both sides by 10+x.
y=\frac{1739}{x+10}
Dividing by 10+x undoes the multiplication by 10+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}