Evaluate
\frac{86800}{127}\approx 683.464566929
Factor
\frac{2 ^ {4} \cdot 5 ^ {2} \cdot 7 \cdot 31}{127} = 683\frac{59}{127} = 683.4645669291339
Share
Copied to clipboard
\begin{array}{l}\phantom{254)}\phantom{1}\\254\overline{)173600}\\\end{array}
Use the 1^{st} digit 1 from dividend 173600
\begin{array}{l}\phantom{254)}0\phantom{2}\\254\overline{)173600}\\\end{array}
Since 1 is less than 254, use the next digit 7 from dividend 173600 and add 0 to the quotient
\begin{array}{l}\phantom{254)}0\phantom{3}\\254\overline{)173600}\\\end{array}
Use the 2^{nd} digit 7 from dividend 173600
\begin{array}{l}\phantom{254)}00\phantom{4}\\254\overline{)173600}\\\end{array}
Since 17 is less than 254, use the next digit 3 from dividend 173600 and add 0 to the quotient
\begin{array}{l}\phantom{254)}00\phantom{5}\\254\overline{)173600}\\\end{array}
Use the 3^{rd} digit 3 from dividend 173600
\begin{array}{l}\phantom{254)}000\phantom{6}\\254\overline{)173600}\\\end{array}
Since 173 is less than 254, use the next digit 6 from dividend 173600 and add 0 to the quotient
\begin{array}{l}\phantom{254)}000\phantom{7}\\254\overline{)173600}\\\end{array}
Use the 4^{th} digit 6 from dividend 173600
\begin{array}{l}\phantom{254)}0006\phantom{8}\\254\overline{)173600}\\\phantom{254)}\underline{\phantom{}1524\phantom{99}}\\\phantom{254)9}212\\\end{array}
Find closest multiple of 254 to 1736. We see that 6 \times 254 = 1524 is the nearest. Now subtract 1524 from 1736 to get reminder 212. Add 6 to quotient.
\begin{array}{l}\phantom{254)}0006\phantom{9}\\254\overline{)173600}\\\phantom{254)}\underline{\phantom{}1524\phantom{99}}\\\phantom{254)9}2120\\\end{array}
Use the 5^{th} digit 0 from dividend 173600
\begin{array}{l}\phantom{254)}00068\phantom{10}\\254\overline{)173600}\\\phantom{254)}\underline{\phantom{}1524\phantom{99}}\\\phantom{254)9}2120\\\phantom{254)}\underline{\phantom{9}2032\phantom{9}}\\\phantom{254)999}88\\\end{array}
Find closest multiple of 254 to 2120. We see that 8 \times 254 = 2032 is the nearest. Now subtract 2032 from 2120 to get reminder 88. Add 8 to quotient.
\begin{array}{l}\phantom{254)}00068\phantom{11}\\254\overline{)173600}\\\phantom{254)}\underline{\phantom{}1524\phantom{99}}\\\phantom{254)9}2120\\\phantom{254)}\underline{\phantom{9}2032\phantom{9}}\\\phantom{254)999}880\\\end{array}
Use the 6^{th} digit 0 from dividend 173600
\begin{array}{l}\phantom{254)}000683\phantom{12}\\254\overline{)173600}\\\phantom{254)}\underline{\phantom{}1524\phantom{99}}\\\phantom{254)9}2120\\\phantom{254)}\underline{\phantom{9}2032\phantom{9}}\\\phantom{254)999}880\\\phantom{254)}\underline{\phantom{999}762\phantom{}}\\\phantom{254)999}118\\\end{array}
Find closest multiple of 254 to 880. We see that 3 \times 254 = 762 is the nearest. Now subtract 762 from 880 to get reminder 118. Add 3 to quotient.
\text{Quotient: }683 \text{Reminder: }118
Since 118 is less than 254, stop the division. The reminder is 118. The topmost line 000683 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 683.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}