Solve for p
p = \frac{8500}{89} = 95\frac{45}{89} \approx 95.505617978
Share
Copied to clipboard
170000\left(-p+100\right)=8000p
Variable p cannot be equal to 100 since division by zero is not defined. Multiply both sides of the equation by -p+100.
-170000p+17000000=8000p
Use the distributive property to multiply 170000 by -p+100.
-170000p+17000000-8000p=0
Subtract 8000p from both sides.
-178000p+17000000=0
Combine -170000p and -8000p to get -178000p.
-178000p=-17000000
Subtract 17000000 from both sides. Anything subtracted from zero gives its negation.
p=\frac{-17000000}{-178000}
Divide both sides by -178000.
p=\frac{8500}{89}
Reduce the fraction \frac{-17000000}{-178000} to lowest terms by extracting and canceling out -2000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}