Evaluate
\frac{17}{6}\approx 2.833333333
Factor
\frac{17}{2 \cdot 3} = 2\frac{5}{6} = 2.8333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)170}\\\end{array}
Use the 1^{st} digit 1 from dividend 170
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)170}\\\end{array}
Since 1 is less than 60, use the next digit 7 from dividend 170 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)170}\\\end{array}
Use the 2^{nd} digit 7 from dividend 170
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)170}\\\end{array}
Since 17 is less than 60, use the next digit 0 from dividend 170 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)170}\\\end{array}
Use the 3^{rd} digit 0 from dividend 170
\begin{array}{l}\phantom{60)}002\phantom{6}\\60\overline{)170}\\\phantom{60)}\underline{\phantom{}120\phantom{}}\\\phantom{60)9}50\\\end{array}
Find closest multiple of 60 to 170. We see that 2 \times 60 = 120 is the nearest. Now subtract 120 from 170 to get reminder 50. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }50
Since 50 is less than 60, stop the division. The reminder is 50. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}