Solve for t
t = \frac{\sqrt{6830} + 60}{19} \approx 7.50756916
t=\frac{60-\sqrt{6830}}{19}\approx -1.191779687
Share
Copied to clipboard
19t^{2}-120t=170
Swap sides so that all variable terms are on the left hand side.
19t^{2}-120t-170=0
Subtract 170 from both sides.
t=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 19\left(-170\right)}}{2\times 19}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 19 for a, -120 for b, and -170 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-120\right)±\sqrt{14400-4\times 19\left(-170\right)}}{2\times 19}
Square -120.
t=\frac{-\left(-120\right)±\sqrt{14400-76\left(-170\right)}}{2\times 19}
Multiply -4 times 19.
t=\frac{-\left(-120\right)±\sqrt{14400+12920}}{2\times 19}
Multiply -76 times -170.
t=\frac{-\left(-120\right)±\sqrt{27320}}{2\times 19}
Add 14400 to 12920.
t=\frac{-\left(-120\right)±2\sqrt{6830}}{2\times 19}
Take the square root of 27320.
t=\frac{120±2\sqrt{6830}}{2\times 19}
The opposite of -120 is 120.
t=\frac{120±2\sqrt{6830}}{38}
Multiply 2 times 19.
t=\frac{2\sqrt{6830}+120}{38}
Now solve the equation t=\frac{120±2\sqrt{6830}}{38} when ± is plus. Add 120 to 2\sqrt{6830}.
t=\frac{\sqrt{6830}+60}{19}
Divide 120+2\sqrt{6830} by 38.
t=\frac{120-2\sqrt{6830}}{38}
Now solve the equation t=\frac{120±2\sqrt{6830}}{38} when ± is minus. Subtract 2\sqrt{6830} from 120.
t=\frac{60-\sqrt{6830}}{19}
Divide 120-2\sqrt{6830} by 38.
t=\frac{\sqrt{6830}+60}{19} t=\frac{60-\sqrt{6830}}{19}
The equation is now solved.
19t^{2}-120t=170
Swap sides so that all variable terms are on the left hand side.
\frac{19t^{2}-120t}{19}=\frac{170}{19}
Divide both sides by 19.
t^{2}-\frac{120}{19}t=\frac{170}{19}
Dividing by 19 undoes the multiplication by 19.
t^{2}-\frac{120}{19}t+\left(-\frac{60}{19}\right)^{2}=\frac{170}{19}+\left(-\frac{60}{19}\right)^{2}
Divide -\frac{120}{19}, the coefficient of the x term, by 2 to get -\frac{60}{19}. Then add the square of -\frac{60}{19} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{120}{19}t+\frac{3600}{361}=\frac{170}{19}+\frac{3600}{361}
Square -\frac{60}{19} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{120}{19}t+\frac{3600}{361}=\frac{6830}{361}
Add \frac{170}{19} to \frac{3600}{361} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{60}{19}\right)^{2}=\frac{6830}{361}
Factor t^{2}-\frac{120}{19}t+\frac{3600}{361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{60}{19}\right)^{2}}=\sqrt{\frac{6830}{361}}
Take the square root of both sides of the equation.
t-\frac{60}{19}=\frac{\sqrt{6830}}{19} t-\frac{60}{19}=-\frac{\sqrt{6830}}{19}
Simplify.
t=\frac{\sqrt{6830}+60}{19} t=\frac{60-\sqrt{6830}}{19}
Add \frac{60}{19} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}