Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

17x-x^{2}-52=0
Subtract 52 from both sides.
-x^{2}+17x-52=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=17 ab=-\left(-52\right)=52
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-52. To find a and b, set up a system to be solved.
1,52 2,26 4,13
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 52.
1+52=53 2+26=28 4+13=17
Calculate the sum for each pair.
a=13 b=4
The solution is the pair that gives sum 17.
\left(-x^{2}+13x\right)+\left(4x-52\right)
Rewrite -x^{2}+17x-52 as \left(-x^{2}+13x\right)+\left(4x-52\right).
-x\left(x-13\right)+4\left(x-13\right)
Factor out -x in the first and 4 in the second group.
\left(x-13\right)\left(-x+4\right)
Factor out common term x-13 by using distributive property.
x=13 x=4
To find equation solutions, solve x-13=0 and -x+4=0.
-x^{2}+17x=52
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+17x-52=52-52
Subtract 52 from both sides of the equation.
-x^{2}+17x-52=0
Subtracting 52 from itself leaves 0.
x=\frac{-17±\sqrt{17^{2}-4\left(-1\right)\left(-52\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 17 for b, and -52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-1\right)\left(-52\right)}}{2\left(-1\right)}
Square 17.
x=\frac{-17±\sqrt{289+4\left(-52\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-17±\sqrt{289-208}}{2\left(-1\right)}
Multiply 4 times -52.
x=\frac{-17±\sqrt{81}}{2\left(-1\right)}
Add 289 to -208.
x=\frac{-17±9}{2\left(-1\right)}
Take the square root of 81.
x=\frac{-17±9}{-2}
Multiply 2 times -1.
x=-\frac{8}{-2}
Now solve the equation x=\frac{-17±9}{-2} when ± is plus. Add -17 to 9.
x=4
Divide -8 by -2.
x=-\frac{26}{-2}
Now solve the equation x=\frac{-17±9}{-2} when ± is minus. Subtract 9 from -17.
x=13
Divide -26 by -2.
x=4 x=13
The equation is now solved.
-x^{2}+17x=52
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+17x}{-1}=\frac{52}{-1}
Divide both sides by -1.
x^{2}+\frac{17}{-1}x=\frac{52}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-17x=\frac{52}{-1}
Divide 17 by -1.
x^{2}-17x=-52
Divide 52 by -1.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-52+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=-52+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{81}{4}
Add -52 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{9}{2} x-\frac{17}{2}=-\frac{9}{2}
Simplify.
x=13 x=4
Add \frac{17}{2} to both sides of the equation.