Solve for x
x=\frac{\sqrt{154}+1}{17}\approx 0.788804332
x=\frac{1-\sqrt{154}}{17}\approx -0.671157273
Graph
Share
Copied to clipboard
17x^{2}-2x+11=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
17x^{2}-2x+11-20=20-20
Subtract 20 from both sides of the equation.
17x^{2}-2x+11-20=0
Subtracting 20 from itself leaves 0.
17x^{2}-2x-9=0
Subtract 20 from 11.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 17\left(-9\right)}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, -2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 17\left(-9\right)}}{2\times 17}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-68\left(-9\right)}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-2\right)±\sqrt{4+612}}{2\times 17}
Multiply -68 times -9.
x=\frac{-\left(-2\right)±\sqrt{616}}{2\times 17}
Add 4 to 612.
x=\frac{-\left(-2\right)±2\sqrt{154}}{2\times 17}
Take the square root of 616.
x=\frac{2±2\sqrt{154}}{2\times 17}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{154}}{34}
Multiply 2 times 17.
x=\frac{2\sqrt{154}+2}{34}
Now solve the equation x=\frac{2±2\sqrt{154}}{34} when ± is plus. Add 2 to 2\sqrt{154}.
x=\frac{\sqrt{154}+1}{17}
Divide 2+2\sqrt{154} by 34.
x=\frac{2-2\sqrt{154}}{34}
Now solve the equation x=\frac{2±2\sqrt{154}}{34} when ± is minus. Subtract 2\sqrt{154} from 2.
x=\frac{1-\sqrt{154}}{17}
Divide 2-2\sqrt{154} by 34.
x=\frac{\sqrt{154}+1}{17} x=\frac{1-\sqrt{154}}{17}
The equation is now solved.
17x^{2}-2x+11=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
17x^{2}-2x+11-11=20-11
Subtract 11 from both sides of the equation.
17x^{2}-2x=20-11
Subtracting 11 from itself leaves 0.
17x^{2}-2x=9
Subtract 11 from 20.
\frac{17x^{2}-2x}{17}=\frac{9}{17}
Divide both sides by 17.
x^{2}-\frac{2}{17}x=\frac{9}{17}
Dividing by 17 undoes the multiplication by 17.
x^{2}-\frac{2}{17}x+\left(-\frac{1}{17}\right)^{2}=\frac{9}{17}+\left(-\frac{1}{17}\right)^{2}
Divide -\frac{2}{17}, the coefficient of the x term, by 2 to get -\frac{1}{17}. Then add the square of -\frac{1}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{17}x+\frac{1}{289}=\frac{9}{17}+\frac{1}{289}
Square -\frac{1}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{17}x+\frac{1}{289}=\frac{154}{289}
Add \frac{9}{17} to \frac{1}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{17}\right)^{2}=\frac{154}{289}
Factor x^{2}-\frac{2}{17}x+\frac{1}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{17}\right)^{2}}=\sqrt{\frac{154}{289}}
Take the square root of both sides of the equation.
x-\frac{1}{17}=\frac{\sqrt{154}}{17} x-\frac{1}{17}=-\frac{\sqrt{154}}{17}
Simplify.
x=\frac{\sqrt{154}+1}{17} x=\frac{1-\sqrt{154}}{17}
Add \frac{1}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}