Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{144}{169}
Divide both sides by 169.
x^{2}-\frac{144}{169}=0
Subtract \frac{144}{169} from both sides.
169x^{2}-144=0
Multiply both sides by 169.
\left(13x-12\right)\left(13x+12\right)=0
Consider 169x^{2}-144. Rewrite 169x^{2}-144 as \left(13x\right)^{2}-12^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{12}{13} x=-\frac{12}{13}
To find equation solutions, solve 13x-12=0 and 13x+12=0.
x^{2}=\frac{144}{169}
Divide both sides by 169.
x=\frac{12}{13} x=-\frac{12}{13}
Take the square root of both sides of the equation.
x^{2}=\frac{144}{169}
Divide both sides by 169.
x^{2}-\frac{144}{169}=0
Subtract \frac{144}{169} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{144}{169}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{144}{169} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{144}{169}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{576}{169}}}{2}
Multiply -4 times -\frac{144}{169}.
x=\frac{0±\frac{24}{13}}{2}
Take the square root of \frac{576}{169}.
x=\frac{12}{13}
Now solve the equation x=\frac{0±\frac{24}{13}}{2} when ± is plus.
x=-\frac{12}{13}
Now solve the equation x=\frac{0±\frac{24}{13}}{2} when ± is minus.
x=\frac{12}{13} x=-\frac{12}{13}
The equation is now solved.